PATENT CLEARED

E6G-TMI-7843

cy 2

EGG-TMI-7843 September 1987

PATENT CLEARED

TMI-2 DATA SUMMARY REPORT

LOAN COPY

THIS REPORT MAY BE RECALLED AFTER TWO WEEKS. PLEASE RETURN PROMPTLY TO:

INEL TECHNICAL LIBRARY

J. L. Anderson D. W. Golden

Robert D. McCormick

EGEGIS

Idaho

National

Engineering Laboratory

> Work performed under DOE Contract No. DE-AC07-76ID01570

EGG-TMI-7843 September 1987

TMI-2 DATA SUMMARY REPORT

.

- R. D. McCormick J. L. Anderson D. W. Golden

ACKNOWLEDGEMENT

The authors wish to express their appreciation to C. L. Olaveson for her able assistance in preparing data for the tables and plots in this report.

ABSTRACT

This report presents all the qualified data generated during the performance of the Data Review Task as part of the TMI-2 Accident Evaluation Program. Data are in graphic form accompanied by amplitude and time base uncertainties. The main body of the report contains the data plots, definition of terms, and a brief description of the data review process. There is also a table summarizing the data qualification categories and uncertainties. Appendices give details on how the data review was performed, data sources, details of analysis methodology, and letter reports generated during the task as reference material.

CONTENTS

.

Ack	(nowledgement	i
Abs	stract	ii
Exe	ecutive Summary	1
1.	Introduction	4
2.	Definitions	7
3.	Data Review Process Summary	10
4.	Summary of Data Quality and Uncertainty	14
5.	Data Plots	25

APPENDICES

A .	Data Review Task	A-1
B .	Data Base Summary	B-1
C .	Sources of Data Qualifications and Support Information	C-1
D.	Methodology for Data Qualification and Uncertainty	D-1
Ε.	Data Uncertainty Analyses and Quality Categories	E-1

TABLES

1.	Summary of Data Quality and Uncertainty	15
2.	OTSG Feedwater Initial Condition	23
C-1	. Reactimeter Logged Parameters	C-1
D-1	. Uncertainty Analysis Equations	D-7
E-1	. Measurements Description List	

٠

FIGURES

1.	Auxiliary Feedwater OTSG-A	26
2.	Auxiliary Feedwater OTSG-B	27
3.	HPI/Makeup Flow	28
4.	Letdown Flow	29
5.	PROV Flow Rate	30
6.	Hot Leg Loop A Mass Flowrate	31
7.	Hot Leg Loop B Mass Flowrate	32
8.	OTSG-A Feedwater Flowrate	33
9.	OTSG-B Feedwater Flowrate	34
10.	Pressurizer Level	35
11.	OTSG-A Level	36
12.	OTSG-B Level	37
13.	Decay Heat Closed Loop A Radiation Monitor	38
14.	Decay Heat Closed Loop B Radiation Monitor	39
15.	IC Pump Area Radiation Monitor	40
16.	Station Vent Radiation Monitor	41
17.	Auxiliary Building Purge Exhaust Radiation Monitor - Prefilter Gas	42
18.	Auxiliary Building Purge Exhaust Radiation Monitor - Prefilter Iodine	43
19.	Auxiliary Building Purge Exhaust Radiation Monitor - Prefilter Particulate	44
20.	Reactor Building Purge Exhaust - A - Radiation Monitor - Gas	45
21.	Reactor Building Purge Exhaust - A - Radiation Monitor - Iodine	46
22.	Reactor Building Pruge Exhaust - A - Radiation Monitor - Particulates	47
23.	Reactor Building Purge Exhaust - B - Radition Monitor - Gas	48

24.	Reactor Building Purge Exhaust - B - Radiation Monitor - Iodine	49
25.	Reactor Building Purge Exhaust - B - Radiation Monitor - Particulates	50
26.	Auxiliary Building Purge Exhaust Radiation Monitor - Postfilter Gas	51
27.	Auxiliary Building Purge Exhaust Radiation Monitor - Postfilter Iodine	52
28.	Auxiliary Building Purge Exhaust Radiation Monitor - Postfilter Particulate	53
29 .	Hydrogen Purge Radiation Monitor - Gas	54
30.	Reactor Building Purge Unit Area Radiation Monitor	55
31.	Auxiliary Building Exhaust Unit Area Radiation Monitor	56
32.	Fuel Handling Exhaust Unit Area Radiation Monitor	57
33.	IC Letdown Cooler B Radiation Monitor	58
34.	IC Letdown Cooler A Radiation Monitor	59
35.	IC Letdown Cooler Inlet Radiation Monitor	60
36.	Primary Coolant Letdown High Radiation Monitor	61
37.	Primary Coolant Letdown Low Radiation Monitor	62
38.	Source Range Monitor Power Level ND-1-P	63
39.	Source Range Monitor Power Level ND-1-S	64
40.	Source Range Monitor Power Level ND-2-P	65
41	Intermediate Range Monitor Power Level ND-3S	66
42.	Intermediate Range Monitor Power Level ND-4S	67
43.	Spent Fuel Cooling Area Radiation Monitor	68
44.	Plant Effluent Radiation Monitor	69
45.	Waste Gas Discharge Radiation Monitor - Gas	70
46.	Reactor Coolant Pressure	71
47.	Containment Building Pressure	72
48.	Turbine Header Pressure - Loop A	73

۷

.

49.	OTSG-A Steam Line Pressure	74
50.	OTSG-B Steam Line Pressure	75
51.	Reactor Coolant Drain Tank Pressure	76
52.	Ambient Temperature Letdown Cooler Area	77
53.	Ambient Temperature Drain Tank Area	78
54.	Letdown Cooler 1A Outlet Temperature	79
55.	Letdown Cooler 1B Outlet Temperature	80
56.	Pressurizer Temperature	81
57.	Pressurizer Surge Line Temperature	82
58.	Hot Leg Temperature Loop A TREND	83
59.	Cold Leg Temperature Loop 2A	84
60.	Hot Leg Temperature Loop B TREND	85
61.	Cold Leg Temperature Loop 2B	86
62.	Cold Leg Temperature Loop 1A	87
63.	Cold Leg Temperature Loop 1B	88
64.	OTSG-A Shell Temperature 1	89
65.	OTSG-A Shell Temperature 2	90
66.	OTSG-A Shell Temperature 3	91
67.	OTSG-A Shell Temperature 4	92
68.	OTSG-A Shell Temperature 5	93
69.	OTSG-B Shell Temperature 1	94
70.	OTSG-B Shell Temperature 2	95
71.	OTSG-B Shell Temperature 3	96
72.	OTSG-B Shell Temperature 4	97
73.	OTSG-B Shell Temperature 5	98
74.	OTSG-A Downcomer Temperature	99
75.	OTSG-B Downcomer Temperature	100

The data presented in this report are the result of the Data Review task which was part of the Three Mile Island Unit-2 (TMI-2) Accident Evaluation Program. The primary goals of the Accident Evaluation Program are to:

- Understand the physical and chemical state of the TMI-2 core and related structures and the external influences which affected the accident,
- Understand what happened during the accident and to provide a qualified data base and analysis exercise of the TMI-2 accident to benchmark severe-accident analysis codes and methodologies,
- Understand the relationship between the phenomena and processes
 controlling the accident and the important severe accident/source
 term technical issues, and
- Assure that the results of the program are effectively transferred to the nuclear community.

To support the above goals, the Accident Evaluation Program is providing a qualified data base and an analysis exercise based on the TMI-2 accident in order to benchmark severe accident analysis codes and methodologies. In particular this Data Summary Report makes the data available to the nuclear community.

The data review process started with collecting the TMI-2 measurement data and support information, establishing priorities and designing a formal system for systematically performing the uncertainty analyses and establishing the quality categories of the data. This system consisted of analyzing the measurements, reviewing the results in committee, and assigning qualification levels and statements to each measurement. In analyzing the measurements, answers to the following questions were sought: (1) are the data consistent with respect to single channel analysis criteria (range, noise limits, time response, and correlation with the significant plant events and prior history)?, (2) do the data agree with other redundant information?, and (3) do the data agree with thermal-hydraulic theory? A Data Integrity Review Committee (DIRC) then reviewed all analyses, evaluations, and comparisons performed in response to the above questions. (The DIRC was composed of a panel of experienced persons, knowledgeable in TMI-2 data analysis.) Finally, the DIRC approved gualification levels and uncertainty assigned to each set of The data were then put into the TMI-2 Initial and Boundary data. Conditions Data Base.

The primary purposes for reviewing and qualifying the data were (1) to identify the uncertainties in operator actions, the sequence of events, and the measured on-line data for defining the TMI-2 analysis exercise, and (2) to provide information to improve our understanding of the accident progression and the interactions between the degraded core, reactor coolant System thermal-hydraulic response, and fission product behavior.

The basic data required for the TMI-2 analysis exercise are:

- RCS pressure and temperatures
- Reactor coolant flow rates
- RCS makeup and letdown flow rates
- Operation periods of emergency core cooling injection
- Operation periods of pilot operated relief value and block value
- o Containment radiation levels
- Source and intermediate-range detector data

INTRODUCTION

On March 28, 1979 the Unit 2 pressurized water reactor at Three Mile Island (TMI-2) underwent an accident resulting in severe damage to the reactor core. Although the accident had minimal effects on the health and safety of the public, it did cause a reevaluation of severe accidents, fission product source terms, and potential power reactor risks. For the past several years the U.S. Nuclear Regulatory Commission (NRC) and other independent research organizations¹⁻⁵ have worked to develop new insights into degraded core accidents and source terms important to nuclear safety and regulation. These research efforts have provided new information and insight, but have yet to conclusively define a methodology for determining realistic source terms for severe accidents. The specification of realistic source terms for severe accidents is one of the major unresolved technical issues facing the nuclear industry today.

The TMI-2 accident is the most severe accident that has occurred in a commercial nuclear power plant in the United States and is providing a wealth of knowledge about core damage and fission product behavior during severe accidents. The TMI-2 accident provides a unique opportunity to confirm the applicability to full scale reactors of existing severe fuel damage and fission product data, obtained from small-scale experiments. It also provides data for an analysis exercise⁶ designed to benchmark current severe accident analysis codes and methodologies based upon a real severe accident in a full-scale operating power reactor.

The Department of Energy (DOE) is sponsoring the TMI-2 Accident Evaluation Program⁷ to take full advantage of this unique research opportunity. To achieve this goal, the program must first develop a consistent and comprehensive physical understanding of the accident. This understanding must then be applied toward resolution of severe accident and source term issues to which the TMI-2 research is applicable. The resolution of these techical issues will contribute to the restoration of public confidence in the nuclear industry and the establishment of a sound technical basis for the desired regulatory relief. The objectives of the Accident Evaluation Program to support this overall goal are:

- To understand the physical and chemical state of the TMI-2 core and related structures as well as the external influences which effected the accident.
- 2. To understand what happened during the accident and to provide a qualified data base and standard problem of the TMI-2 accident to benchmark severe-accident analysis codes and methodologies.
- 3. To understand the relationship between the phenomena and processes controlling the accident and the important severe accident/source term technical issues.

5

 To assure that the results of the program are effectively transferred to the nuclear community.

This document is a summary of the results obtained from the Data Review Task which was part of the Accident Evaluation Program and is in support of Item 2 above and to comply with Item 4.

The purpose of the data review task was to evaluate, qualify and place in a dedicated data base the more important TMI-2 data. This Data Summary Report presents all the qualified TMI-2 data in plots along with the corresponding uncertainties. In addition, enough background information is given to understand the qualification and uncertainty analyses processes and how the information was presented in the data base. Five appendices are attached to the document to provide details for interested readers. Appendix E contains details of how the uncertainty analyses were made on specific data. This appendix consists of letter reports generated during the program to document the work. Documents generated during the data review task are referenced but are not contained in Appendix E.

2. DEFINITIONS

The data plots in the main body of this report contain terms used to describe the types of data, quality level, uncertainty, etc. This section is designed to give a brief description of these terms so that the reader can better utilize the data plots. Some data plots may contain combinations of these terms.

1. Qualified Data

This term describes the quality category of the data. Qualified data has defined uncertainties of a reasonable magnitude and it accurately represents the physical phenomena being measured or calculated. Qualified data are shown as solid lines on the data plots.

2. Trend Data

This term describes the quality category of the data. Trend data has undefined or unacceptably large uncertainties and it only approximately represents the physical phenomenon being measured or calculated but it does contain useful information. Trend data are shown as dashed lines on the data plots.

7

3. Composite Data

A composite data set is composed of data from two or more sources. For example, data might be from a stripchart recorder for one time period and from the reactimeter for another. A composite data set can be Qualified, Trend or a combination of Qualified and Trend.

4. Failed Data

Failed data is data which contain no useful information. This is of interest only because there may be regions within a Qualified or Trend data set where the data is failed. These failed data regions will be left blank, i.e., there will be gaps left in the data plot corresponding to the time in which the data were failed.

5. Computed Data

Computed data is a parameter which is the result of a calculation using measurement data. A computed parameter can be Qualified or Trend.

6. Estimated Data

Estimated data is a parameter which was calculated using assumptions and little real data. Estimated data can only be Trend.

7. Uncertainty

Uncertainty is the term used to express the maximum probable error in the data. It is generally given as a symetrical value surrounding the data at all times, i.e., the error value added to the data gives the upper error boundary and the error value subtracted from the data gives the minimum error boundary. In a few cases the uncertainty is itself a function of time or amplitude of the data.

8. Data Qualification

All data have been assigned a category of either Qualified (Q) or Trend (T). The purpose of these terms is to describe generically how good the data are.

3. DATA REVIEW

The purpose of the TMI-2 Data Review task was to provide a single source of data, which was of known quality, for use in understanding and analyzing the TMI-2 accident. The most immediate use of this data is in support of the TMI-2 Analysis Exercise and other ongoing analyses. Data review consisted of collecting the raw data, determining the uncertainty in and quality of the data, and storing it in a dedicated data base. The Data Review Task is described in more detail in Appendix A.

Of the approximately 3000 measurements made at TMI-2, some 170 were selected as being important to the understanding and analysis of the accident. Data at TMI were recorded on computer print outs, magnetic tapes and analog stripcharts. After the accident all such records were impounded at the site and access was allowed only for copying or study. The only source of data for this task, therefore, were microfilm, photographs, and microfiche of the hard copy data and copies of the magnetic tapes. Enlarged color photographs of some of the multipoint recorder data and support documentation to be used in the uncertainty analyses (instrument calibrations, circuit diagrams, operating manuals, etc) were obtained.

Data qualified for the TMI-2 Analysis Exercise were:

- o RCS pressures and temperatures
- o Reactor coolant flow rates

- RCS makeup and letdown flow rates
- Operation periods of ECC injection
- Operation periods of PORV and block valve
- o Containment radiation levels
- o Source and intermediate-range detector data

Data were extracted and stored on a main frame computer. This process was accurate for computer printouts and magnetic tapes. Stripchart data, however, had to be digitized, which was generally done on an apparatus which transferred the plot coordinates directly into the computer.

The next step was to perform an uncertainty analyses on the data. Because some important support information was not available for use in the analyses, major simplifications were made in the approach to determining uncertainties. All errors were treated as bias errors as a function of instrument range. This approach simplified both the uncertainty analyses and the presentation of uncertainty in the data base by eliminating the need for calculation and presentation of the statistical part of the total error. Conservative substitutions were made for the small number of errors which could not be treated as bias (i.e., statistical errors). Most of the error information was taken from instrument calibration sheets which gave errors as a tolerance value which is a bias. Treating any errors as a function of range rather than reading has the effect of making the results more conservative.

Each data set was studied to determine if an analysis could or should be performed. If the preanalysis study revealed problems that precluded calculating measurement uncertainties of a reasonable magnitude, an uncertainty analysis was not performed. The uncertainty analyses provided the error bounds for the data, i.e., the maximum and minimum probable error with a 95% confidence. Because of the simplified approach taken, uncertainties were generally expressed as a symetrical value which applies to the data at all times. In only a few cases were uncertainties calculated which had to be expressed as functions of time or data amplitude. Details of the uncertainty analyses are given in Appendix D.

After the uncertainty was established for the data it was possible to determine the quality category of the data. All data were given a quality category of either Qualified or Trend. The criterion for Qualified data was that it have reasonably sized uncertainty and be well behaved. The criterion for Trend data was that the uncertainties were unreasonably large or uncalculable and that the data only approximate the phenomenon being measured. Data classified as Failed was not presented in this report or in the data base but was retained in the main frame computer raw data file.

After the data had been categoriezed, an internal review was made of the data, the uncertainty analysis, and any underlying assumptions made. A group called the Data Integrity Review Committee (DIRC) reviewed the data put into the TMI-2 Data Base. The size and composition of the DIRC varied according to the type of data being reviewed, but generally consisted of members of the TMI-2 Accident Evaluation Program. For some specific measurements, outside experts participated in the DIRC.

Calculated and estimated parameter data were generated and stored on the main frame computer. These data went through the DIRC process in the same manner as did the measurement data.

4. SUMMARY OF DATA QUALIFICATION AND CERTAINTY

The purpose of this section of the report is summarize the TMI-2 data qualification categories, uncertainties values and plot page numbers for the data plots contained in Section 5. The data summary is contained in Table 1 where data is listed by type (i.e., flow, temperature, pressure, etc.) and within type in alphabetical order. Table 1 also lists measurement data qualification and uncertainty for the once through steam generator (OTSG) feedwater which is valid only prior to turbine trip (time zero of the accident) and therefore are not plotted. Table 2 contains the averaged value for these data immediately prior to the accident.

TABLE 1

SUMMARY OF DATA QUALIFICATION AND UNCERTAINTY

Measurement Identifier	Measurement Description	Amplitude Qualification* Category & Uncertainty	Time Qualification* Category & Uncertainty	Qualification Reference	Plot Page Number
t		FLOW	RATE		
AFW-SG-A	Auxiliary Feedwater Secondary Injection Rate, Based upon Secondary Mass Inventory - Steam Generator A	T Estimate -	T	EGG-TMI-7481	26
AFW-SG-B	Auxiliary Feedwater Secondary Injection Rate, Based upon Secondary Mass Inventory - Steam Generator B	T Estimate	T	EGG-TMI-7481	27
ѽнрі-мирі	HPI/Makeup Estimate Based on Expected Results (Multi-valued Function), ICBC name is HPI/MAKEUP FLOW 1	T Es timate	T	EGG-TMI-7833	28
LETDOWN FLOW	Letdown Cooler Volumetric Flowrate	Q ± 24.6% Reading	Q ± 2.5 min	Letter YN-3-86 & YN-4-87	29
PORV Flow Rate	Calculated Mass Flow Rate Thru PORV	Q ± 20% Reading	Q	EGG-TMI-7825	30
RC-14A-FT-CALC	Hot Leg Calculated Loop A Mass Flow Rate	Q Note 1	Q Note 1 .	EGG-TMI-7485	31
RC-14B-FT-CALC	Hot Leg Calculated Loop B Mass Flow Rate	Q Note 1	Q Note 1	EGG-TMI-7485	32
SP-8A-FT-R	OTSG Feedwater Flow Rate	Q ± 0.106 Mph, Note 2	Q ± 3 sec	Letter RCMc-15-86	No plat
SP-88-FT-R	OTSG Feedwater Flow Rate	Q ± 0.106 Mph Note 2	Q ± 3 sec	Letter RDMc-15-86	No plot

Measurement Identifier	Measurement Description	Amplitude Qualification [*] Category & Uncertainty	* Time Qualification* Category & Uncertainty	Qualification Reference	Plot Page Number
generation with the STA - A State of the Sta		LEVELS MEASU	REMENTS		
RC-1-LT1-L-R	Pressurizer Level	Q <u>+</u> 24 in.	Q ± 3 sec	EGG-TMI-7100	33
SG-A-LEVEL	Steam Generator A - Composite Level	Q ± 9 cm	Q ± 3 sec	EGG-TMI-7359	34
SG-B-LEVEL	Steam Generator B - Composite Level	Q ± 9 cm	Q ± 3 sec	EGG-TMI-7359	35
	٨	IUCLEAR RADIA	TION MEASURE	MENTS	
DC-R-3399-M	Decay Heat Closed A Loop Radiation Monitor	Т	Q±5 min	EGG-TMI-7376	36
DC-R-3400-M	Decay Heat Closed B Loop Radiation Monitor	Т	Q ± 5 min	EGG-TMI-7376	37
HP-R-207-M	Intermediate Cooling Pump Area Radiation Monitor - in the Auxiliary Building	T	Q ± 10 min	EGG-TMI-7376	38
HP-R-219-M	Station Vent Rad Monitor - Gas	т	Q ± 2 min	EGG-TMI-7376	39
HP-R-222-G-M HP-R-222-I-M HP-R-222-P-M	Auxiliary Bldg Purge Air Exhaust Rad Monitor Upstream of Filter - Gas - Iodine - Particulate	Т	Q ± 2 min	EGG-TMI-7376	40
HP-R-225-G-M HP-R-225-I-M HP-R-225-D-M	Reactor Building Purge Air Exhaust, Duct A, Rad Monitor	т	Q ± 2 min	EGG-TMI-7376	41 42
HP-R-226-G-M HP-R-226-I-M HP-R-226-P-M	Reactor Bldg Purge Air Exhaust, Duct B, Rad Monitor - Gas, - Iodine, -Particulate	T .	Q ± 2 min	EGG-TMI-7376	43 44 45 46

Measurement	Measurement	Amplitude of the second			
Identifier	Description	Category & Uncertainty	<pre>Time Qualification* Category & Uncertainty</pre>	Qualification Reference	Plot Page Number
H P-R-228-G-M H P-R-228-I-M HP-R-228-P-M	Auxiliary Bldg Purge Air Exhaust Rad Monitor Downstream of Filter - Gas, - Iodine, - Particulate	T	Q ± 2 min	EGG-TMI-7376	49 50 51
HP-R-229-G-M	Hydrogen Purge Rad Monitor - Gas	Т	Q ± 2 min	EGG-TMI-7376	52
HP-R-3236-M	Reactor Building Purge Unit Area Radiation Monitor	T	Q ± 15 min	EGG-TMI-7376	53
HP-R-3238-M	Auxiliary Building Exhaust Unit Area Radiation Monitor	т	Q ± 15 min	EGG-TMI-7376	54
HP-R-3240-M	Fuel Handling Exhaust Unit Area Radiation Monitor	Т	Q ± 15 min	EGG-TMI-7376	55
IC-R-1091-M	Intermediate Coolant Letdown, Cooler B Radiation Monitor	т	Q±5min	EGG-TMI-7376	56
IC-R-1092-M	Intermediate Coolant Letdown, Cooler A Radiation Monitor	T (2 ± 5 min	EGG-TM1-7376	57 ·
IC-R-1093-M	Intermediate Coolant Letdown, Inlet Radiation Monitor	τ	t 5 min	EGG-TMI-7376	58
MU-R-720H-M	Primary Coolant Letdown HI Radiation Monitor	т Q	± 5 min	EGG-TMI-7376	50
MU-R-720L-M	Primary Coolant Letdown LO [Radiation Monitor	r q	±5 min	GG-TMI-7376	60
NI-ND-1-P NI-ND-1-S NI-ND-2-P NI-ND-3-S NI-ND-4-S	Source Range Power Level Q Source Range Power Level Q Source Range Power Level Q Intermediate Range Power Level T Intermediate Range Power Level T	Note 3 Note 3 Note 3 Q Note 3 Q	-30/+0 sec E -45/+10 sec E -30/+0 sec E - 45/+10 sec E	GG-TMI-7174 GG-TMI-7174 GG-TMI-7174	61 62 63
	Level	Q	- 45/+10 sec	GG-TMI-7174	64 65

	Measurement Identifier	Measurement Description	Amplitude Qualification* Category & Uncertainty	Time Qualification* Category & Uncertainty	Qualification Reference	Plot Page Number
	SF-R-3402-M	Spent Fuel Cooling Area Radiation Monitor	T	Q±5min	EGG-TMI-7376	66
	WDL-R-1311-M	Plant Effluent Radiation Monitor, Unit 2	Т	Q±5min	EGG-TMI-7376	67
	WGD-R-1480-G-M	Waste Gas Discharge Duct Radiation Monitor - Gas	Т	Q±2min	EGG-TMI-7376	68
			PRESSURE			
	PRESSPRIMARY	Reactor Coolant Composite Pressure	Q ± 40 psi	Q	Letter JA-16-86	69
18	BS-PT-4388-S	Containment Building Pressure	Q ± 0.32 psig Note 4	Q ± 1.2 min	Letter JA-4-87	70
-	SP-10A-PT1-R	Turbine Header Pressure - Loop A	Q ± 8.2 psig	Q ± 3 sec	Letter JA-2-87	71
	SP-6A-PT1-R	Steam Generator A - Steam Pressure	Q ± 16.1 psi	Q ± 3 sec	Letter JA-18-86	72
(SP-6B-PT1-R	Steam Generator B - Steam Pressure	Q ± 16.1 psi	Q ± 3 sec	Letter JA-18-86	73
	WDL-PT-1202-R	Reactor Coolant Drain Tank (RCDT) Pressure	Q ± 3.9 psi	Q ± 3 sec	Letter JA-1-87	74
			TEMPERATURE			
	AH-TE-5011-M	Ambient Temperature, Letdown Cooler Area	Q/T ± 3.3 F	Q ± 90 sec	Letter RDMc-5-87	75

82.8

Measur eme nt Identifier	Measurement Description	Amplitude Quality* Category & Uncertainty	Time Quality* Category & Uncertainty	Qualification Reference	Plot Page Number
AH-TE-5012-M	Ambient Temperature, Drain Tank Area	Q/T ± 3.3 F	Q ± 90 sec	Letter RDMc-5-87	76
FW-TE-1131-P	Feedwater Heater B Outlet Temperature	Q ± 2.2 F Note 2	Q - 1.5/+1 min	Letter RDMc-1-87	No plot
MU-TE-739-M	Letdown Cooler 1A Outlet Temperature	Q ± 1 0% Reading	Q ± 2.5 min	Letter RDMc-15-87	77
MU-TE-740-M •	Letdown Cooler 18 Outlet Temperature	Q ± 10% Reading	Q ± 2.5 min	Letter RDMc-15-87	78
RC-2-TE1/2-P	Pressuriz <mark>er Temperature</mark>	Q ± 2.5 F	Q <u>+</u> 1 min	Letter RDMc-11-87	79
RC-9-TE-P	Pressurizer Surge Line Temperature	T	Q <u>+</u> 1 min	Letter RDMc-11-87	80
RC-15A-TE1-M	Hot Leg Temperature - Loop A: Wide Range (Elev 355'2")	т.	Q <u>+</u> 2.5 min	Letter RDMc-12-87	81
RC-15A-TE3-M	Cold Leg Temperature - Pump 2A Inlet: Wide Range (Elev 310'2")	т	Q ± 2.5 min	Letter RDMc-12-87	82
• RC-15B-TE1-M	Hot Leg Temperature - Loop B: Wide Range	т	Q ± 2.5 min	Letter RDMc-12-87	83
RC-158-TE3-M	Cold Leg Temperature - Pump 2B Inlet: Wide Range (Elev 310"2")	T	Q ± 2.5 min	Letter RDMc-12-87	84
RC-5A-TE2-R	Cold Leg Temperature - Pump 1A Inlet: Wide Range	Q ± 1.91 F	Q ± 3 sec	Letter RDMc-17-86	85
RC-5B-TE2-R	Cold Leg Temperature - Pump 1B	Q ± 1.91 F	Q ± 3 sec	Letter RDMc-17-86	86

Measurement Identifier	Measurement Description	Amplitude Quality* Category & Uncertainty	Time Quality* Category & Uncertainty	Qualification Reference	Plot Page Number
SP-2A-TE1-P SP-2A-TE2-P SP-2A-TE3-P SP-2A-TE4-P					87 88 89
SP-2A-TE5-P SP-2B-TE1-P SP-2B-TE2-P SP-2B-TE3-P SP-2B-TE3-P SP-2B-TE5-P	OTSG Shell Temperature	Q <u>+</u> 8.1 F	Q ≠ 1 min	Letter RDMc-10-87	90 91 92 93 94 95 96
SP-3A-TE1/2-P SP-3B-TE1/2-P	OTSG Downcomer Temperature	Q <u>+</u> 2.2 F	Q ± 1 min	Letter RDMc-11-87	97 98
SP-4A-TE-P SP-4B-TE-P	Main Stream Temperature	Q <u>+</u> 2.72 F	Q ± 1 min	Letter RDMc-1-87	99 100
SP-5A-TE1/2-R	Feedwater Inlet Temperature	Q ± 1.71 F Note 2	Q ± 3 sec	Letter RDMc-1-87	No plot
SP-12A-TE1-P SP-12A-TE2-P SP-12B-TE1-P SP-12B-TE2-P	OTSG Upper Downcomer Temperature	Q ± 2.2 F	Q±1 min	Letter RDMc-11-87	101 102 103 104
TE-HL-A	Reactor Coolant Composite Temperature - Loop A Hot Leg	Q/T ± 1.14 F	Q ± 3 sec & + 2 min	Letter RDMc-9-87, RDMc-17-86, RDMC-7	105 -87
TE-HL-B	Reactor Coolant Composite Temperature - Loop B Hot Leg	Q/T ± 1.14 F	Q <u>+</u> 3 sec & + 2 min	Letter RDMc-9-86, RDMc-17-86, RDMc-7	106 -87
TSAT-PRIMARY	Reactor Coolant Saturation Temperature	Q ± 4.8 F		Letter JA-16-86	107

Measurement Identifier	Measurement Description	Amplitude Quality* Category & Uncertainty	Time Quality* Category & Uncertainty	Qualification Reference	Plot P age Number
TSAT-SG-A	Saturation Temperature from Pressure, Steam Generator A	Q ± 5.5 F	Q ± 3 sec	EGG-TMI-7482	108
TSAT-SG-B	Saturation Temperature from Pressure, Steam Generator B	Q ± 5.5 F	Q ± 3 sec	EGG-TM1-7482	109
WDL-TE-1200-P	Reactor Coolant Drain Tank (RCDT) Temperature	Q t 1.7 F	Q - 30/+ 0 sec	Letter JA-1-87	110
		BINARY MEASU	REMENTS		
PCP1A	Primary Coolant Pump 1A (Start/Stop Times), Binary Function	T			111
PCP1B 21	• Primary Coolant Pump 1B (Start/Stop Times), Binary Function	T			112
PCP2A	Primary Coolant Pump 2A (Start/Stop Times), Binary Function	T			113 -
PCP2B	Primary Coolant Pump 2B (Start/Stop Times), Binary Function	т			114

Measurement Identifier 	Measurement Description	Amplitude Quality* Category & Uncertainty	Time Quality* Category & Uncertainty	Qualification Reference	Plot Pag Number
RC-V1-R	Pressurizer Spray Valve Position, Binary Function, ICBC name is Spray Valve	Q NA	Q <u>+</u> 3 sec	Letter DWG-5-86	115
RC-V2	Pressurizer Block Valve Position (Open/Closed), Binary Function, ICBC name is Block Valve	Q NA	Q <u>+</u> 0.5 min	Letter DWG-7-86	116
	*Definitions of these terms are f Q = Qualified, T = Trend, NA = N	ound in Section 2 of this ot Applicable.	s report.		

۲

NOTES:

The uncertainty in the RC-14 A&B-FT data is a function of time and is expressed by a curve on the data plot. 1. ²²2.

These values are valid for initial conditions i.e., prior to accident time zero.

The uncertainty of the source range monitor is $\pm 8 \times 10^{-4} \times (\text{Reading})^2 + 10^6$) ^{1/2}. 3.

The pressure spike has an uncertainty of \pm 2.2 psig. 4.

TABLE 2

OTSG FEEDWATER INITIAL CONDITION

Measurement	Pre-Turbine Trip		
Identifier	Value	Comment	
SP-8A-FT-R	5.74 Mph	Average of two minutes.	
SP- 88- FT-R	5.69 Mph	Average of two minutes.	
SP- 5A- TE1/2-R	463.8 ⁰ F	1.5 min average.	
FW-TE-1131-P	461 ⁰ F	Hourly log reading	
		Heater ou tput	
		Single point	

Mph - Millions of pounds per hour.

.

- M. Silberberg, et. al., <u>Reassessment of the Technical Bases for</u> <u>Estimating Source Terms</u> (Draft report for comments), NUREG-0956, July 1985.
- 2. A. Buhl, et. al., "IDCOR '85 -- The Severe Accident Issues, Individual Plant Examinations and Source Term Reductions," paper presented at the <u>Atomic Industrial Forum Conference on New</u> <u>Directives in Licensing</u>, Dallas, Texas, May 1985.
- Report of the Special Committee on Source Terms, American Nuclear Society, September 1984.
- <u>Radionuclide Release from Severe Accidents at Nuclear Power Plants</u>, American Physical Society, February 1985.
- <u>Assessment of Radionuclide Source Terms Research</u>, DOE-ID-10126, March 1985.
- Golden, D. W., et. al., <u>TMI-2 Standard Problem Package</u>, EGG-TMI-7382, September 1986.
- 7. Tolman, E. L., et. al., "<u>TMI-2 Accident Evaluation Program</u>," EGG-TMI-7048, February 1986.

5. DATA PLOTS

This section of the report contains the plots of the data listed in Table 1.

٠

.

.

.

DASHED LINES INDICATE AMPL UNC BOUNDS TIME UNC = -3/+3 SEC

DASHED LINES INDICATE AMPL UNC BOUNDS

Յ

MR/HR

*

MR/HR

Y.

ų

March .

.

.

¥.

.

+

.

.

د

.

•

۰.

APPENDIX A

DATA REVIEW TASK

The purpose of the data review task was to provide a single source of TMI-2 measurement data which had been systematically analyzed and corrected. These data were then put into a dedicated TMI-2 data base along with the associated uncertainties.

The Data Review Task was a direct result of the Analysis Exercise which required a common and sole source of measurement data for all participants. The primary elements of the task can be seen on the flow chart on Figure A-1. Because of the limited time available for performing this task, the three items on the top of the chart were performed at approximately the same time, i.e., develop procedures, collect data, and establish priorities. An associated task done at this time was the development of the Data Base. The TMI-2 Data Base is discussed briefly in Appendix B.

1. Establishing Priorities and Procedures

There were some 3000 measurements being made at TMI-2, however, not all of these were being recorded at the same time. The analysts who were setting up the structure of the Analysis Exercise found about 300 measurements of interest and then selected and prioritized 170. This extensive list containing more information that was essential to the

. Figure A-1

DATA REVIEW TASK FLOW CHART

•

Analysis Exercise. The 170 selected measurements were prioritized from 1 to 4 in order of importance. Measurements were added to and moved within the priority structure as the task progressed and priorities changed. Approximately half of these measurements had been analyzed and put into the data base at the task completion.

It was necessary to prepare the methodology for performing the uncertainty analyses on the data, the criteria for determining the data quality categories, and the internal review process. These procedures were prepared at the beginning of the program and were modified as the realities of the task dictated.

2. Data Collection and Support Information

Measurements at TMI-2 were recorded from typical process instruments on various media, i.e., computer printouts, magnetic tapes, analog stripcharts (both multipoint and single line). Most of these instruments continued to operate throughout the accident and actually very little recorded data were lost. In several cases, stripchart recorders had paper jams which were not corrected for several hours. In other instances, the measurement systems were over ranged by abnormally large input signals which caused the electrical systems to saturate.

After the accident all records were impounded at TMI and access was allowed only for copying or study. By the time this task began (some six years after the accident) a rather extensive library of microfiche and

film of the recorded data was available. These were obtained for the data review task along with copies of magnetic tapes. This was the extent of the data sources for the task except for some color photographs of multipoint stripcharts which were requested.

Most support documentation for the uncertainty analyses was obtained by request. These were items such as instrument calibrations, manufacturers specifications, operating manuals, etc. Unfortunately it was not possible to obtain the quantity and types of information necessary to do a classical uncertainty analyses and data qualification on most of the data. The result was that the uncertainty methodology was modified to accommodate the information available and the use of estimates and engineering judgment was greatly increased.

Data were extracted and stored on a main frame computer. This process was accurate for computer printouts and magnetic tapes. Stripchart data had to be digitized which increased the uncertainty in that data. Major problems were encountered in identifying printed numbers on the multipoint recordings even when extensive use was made of enlarged color photographs of the recordings.

3. Data Uncertainty Analysis

For this task we have defined data uncertainty as the maximum probable amount of error in the data. Because of the unavailability of support documentation, some major simplifications were necessary in our approach to determine uncertainties. The method decided upon was derived from that advocated by Abernathy^[A-1]. One major change was that we treated all errors as being bias-range errors. In those cases where this was obviously not true, conservative substitutions were made. The reason for this was two-fold - we wanted to simplify the analyses and presentation of the uncertainties and we found very little error information that was not a function of bias. The use of an error as a function of range rather than reading is a conservative approach. Much error information came from calibration sheets which gave only the error tolerance of the circuits which are bias errors.

The following two equations, therefore, were the basis for our analyses. The first is the basic equation for determining the uncertainty in a measurement and the second is for a calculated parameter with three independent variables.

$$B = \left[\sum_{j=1}^{n} b_{j}^{2} \right]^{1/2}$$

$$B_{w}^{2} = \left(\frac{\partial w}{\partial x} - B_{x}\right)^{2} + \left(\frac{\partial w}{\partial y} - B_{y}\right)^{2} + \left(\frac{\partial w}{\partial z} - B_{z}\right)^{2}$$

where w = f(z,y,z), a generic function of three independent variables

B = measurement uncertainty or error bounds

b = elemental measurement error.

4. Determining Data Quality Categories

It was found convenient in this program to assign a quality category or label to each data set to generically describe its relative quality. This makes it possible for a user of the data to gain some concept of the data quality without referring to the uncertainty values in the data base. The terms Qualified, Trend and Failed were used to describe the data sets. Qualified data was defined as data which accurately represented the physical phenomenon being measured and had reasonably sized uncertainty. Trend data are defined as data which only approximately represented the physical phenomena being measured and had uncalculable or unreasonably large uncertainties (these data do contain some useful information). Failed data contained no useful information and was not retained in the data base. The quality category was assigned after reviewing the data and associated uncertainty analysis. If it was not possible to do an uncertainty analysis on the data, it was automatically categorized as Trend.

An internal review was made of the uncertainty analysis and categorization process by a Data Integrity Review Committee (DIRC). This committee was made up mostly of individuals working on the TMI-2 data review task but outside specialists were brought in as needed.

Generally, the individual who performed the analyses presented his work to the DIRC and sought their approval. Very often it was necessary for the analyst to try several times before getting DIRC approval of his analysis and assigned quality category. After DIRC approval the data were put into the dedicated TMI-2 Data Base.

 A-1. R. B. Abernethy, R. P. Benedict, "Measurement Uncertainty: A Standard Methodology," ISA Transactions, Vo. 24, Number 1, 1985, pp. 75.

APPENDIX B

DATA BASE SUMMARY

There are four TMI-2 data bases² which provide access to the Accident Sequence of Events $(SOE)^3$, the plant measurements during the accident $(ICBC)^3$, the core end state $(CCB)^4$, and the results of sample examinations $(CSE)^5$. These data bases were developed to function on a personal computer CIBM compatible and are described in detail in the references.

The reviewed data described in this report has been placed in the initial and boundary conditions (SCBC) data base. This data base presents the data in either graphical or tabular formats at the user's discretion. This data base, also, provides the user with the compatibility to manipulate the data. Possible manipulations include for example the addition, subtraction, multiplication or division of two data channels, addition, subtraction, multiplication or division by a constants differentiation and integration.

A user can upload his own data or calculational results into the data base for graphical comparison to the TMI-2 data.

Two additional data bases are maintained on the INEL mainframe computers. The first data base, TMIRAW, includes all the reactimeter data and the strip and multipoint recorder charts which have been digitized. No corrections or modifications have been made to the data in TMIRAW. The

6-1

second data base (TMIQUAL) contains the reviewed data. These data may have had corrections applied or be composite data (e.g., composite of strip chart and reactimeter data). The only difference between TMIQUAL and ICBC is that data downloaded to the personal comptuer environment may have been decimated. Decimation of the data was done to improve the efficiency of the ICBC data base.

APPENDIX C

SOURCES OF DATA AND SUPPORT INFORMATION

The Data Review Task required not only the instrument measurement data recorded at TMI-2 but a great deal of supporting information on the reactor system and facility physical configurations. The sources of data and support information were documents ranging from formal reports to microfische. A TMI-2 library was setup at INEL where reports, papers, drawings, etc., were gathered. Included were over 100 microfilms and four books of microfiche. The microfilm contained most of the stripchart data used in this task as well as copies of computer printouts. The support information consisted of items such as design specifications, instrument calibration sheets, manufacturers equipment instruction sheets, drawings and schematics. Often additional support information needed for an analysis had to be requested from TMI-2 after an analysis was started.

Basic information on the instrument systems was generally available, i.e., items such as system diagrams and manufacturers instruction sheets. The result was that the analyst usually knew and understood how the measurement systems worked. The major information lacking was calibration information on the measurement systems and components, especially near the accident date. It was often impossible to find detailed information on items such as the exact location of a transducer or the functional details of a particular circuit. The lack of support information was responsible for the uncertainty analysis methodology choosen. The methodology ultimately used was a simplified version which was somewhat less rigorous than a classical approach.

C-1

The remainder of this appendix gives details on the sources of measurement data which were contained in the documentation reviewed for this task.

1. Reactimeter

The reactimeter was a high quality 24 channel data acquisition system provided by Babcock & Wilcox. Its name was derived form its capability to record reactor core reactivity, however, this function was normally used only during reactor startup testing. The reactimeter also recorded some of the key reactor parameters, and it was the availability of these data that made the reactimeter recordings particularly valuable to the Accident Evaluation Program.

The 24 channels of data were recorded on magnetic tape in the form of voltage readings. These voltages were directly proportional to the parameters being monitored, e.g., pressure, temperature and flow. The parameters which were being monitored at the time of the accident are listed in Table C-1. The data signals going to the reactimeter originated from the same detectors which provided signals for normal plant monitoring and safety systems actuation.

The reactimeter data obtained by INEL was in engineering unit form, i.e., the conversions had already been made from the voltage recorded on the originated tapes. We requested and obtained the list of conversion

C-2

TABLE C-1

REACTIMETER LOGGED PARAMETERS

<u>Channel</u>

.

```
1
     Power range level--nuclear instrument-5 (0-125%)
2
     Loop A hot leg temperature--narrow range (520-620°F)
     Luop B hot leg temperature--narrow range (520-620°F)
3
     LCOD A cold leg temperature--wide range (50-650°F)
4
     Loop B cold leg temperature--wide range (50-650°F)
5
6
     Loop A reactor coolant flow--temperature compensated
     (0-90 MPPH)*
7
     Pressurizer level--temperature compensated (0-400 in.)
8
     Makeup tank level (0-100 in.)
9
     Pressurizer spray valve position (open-closed)
     Drain tank pressure (0-250 psig)
10
11
     Loop B reactor coolant pressure--narrow range (1700-2500 psig)
12
     Reactor trip (run-trip)
13
     Loop B reactor coolant flow--temperature compensated (0-90
     MPPH)*
     Feedwater temperature (0-500°F)
14
15
     Turbine header pressure--Loop A (600-1200 psig)
16
     Steam generator A operate level--temperature compensated
     (C-100%)
17
     Steam generator A start-up level (0-250 in.)
18
     Feedwater flow--Loop A (0-6500 KPPH)+
19
     Feedwater flow--Loop B (0-6500 KPPH)+
20
     Turbine trip (run-trip)
21
     Steam generator A steam pressure (0-1200 psig)
22
     Steam generator B steam pressure (0-1200 psig)
23
     Steam generator B operate level--temperature compensated
     (0-100\%)
     Steam generator B startup level (0-250 in.)
24
```

***MPPH:** Million pounds per hour.

⁺KPPH: Thousand pounds per hour.

functions which had been used on those tapes. Data was received for 16 hours prior to the beginning of the accident to about 27 hours afterwards. There was one time interval where about four minutes of data were lost when the tape was being changed.

The reactimeter could sample each channel on any time interval from 0.2 second to 12.6 seconds. At the time of the accident it was set to sample each channel on a 3 second interval, that is, it sampled all 24 channels in two 1.6 millisecond intervals once every three seconds.

The reactimeter was physically located in the Unit 2 Cable Spreading Room. The only attention it normally required was changing the magnetic tape about every 26 hours. The magnetic tapes that were produced by the reactimeter can be directly read by a computer which displays the data in the form of tables or graphs. Because of the accurate, continuous, retrievable nature of the reactimeter data, it is considered to be the most reliable data available on those parameters it was montoring. For this reason, it is being used as a reference baseline against which to measure the accuracy of other data sources pertaining to the TMI-2 accident.

2. Analog Strip Charts

Many of the primary and secondary plant parameters were continuously recorded on strip chart recorders located in the control room. These

C-4

recorders allowed the operators to observe trends in the monitored parameters and they created a historical record of the trends.

There were basically two types of recorders used in the control room -- pen recorders which employed an ink pen to produce a continuous line plot of the parameter's value, and the multipoint recorder which monitored several parameters and printed a code number identifying each parameter, as it was scanned. The code number was printed at a location on the strip chart representing the parameter's value.

Legibility was normally the biggest problem encountered in trying to extract information from strip charts. This was especially true of the multipoint recorders, when several parameter traces were printed on top of each other, and when the printed numbers were not readable. The problem of legibility was compounded by the slow speed at which the strip charts travelled (normally 1 inch/hour for the pen plotters). A large amount of data was compressed into a small linear space. Also, if the strip charts were not properly annotated when removed from the recorder, problems occurred in recovering the time frame of the plots.

Differences between strip chart and reactimeter values for the same parameters indicated that strip chart data was generally less accurate than reactimeter data. However, the strip charts were calibrated periodically and had acceptable accuracy for most purposes -- especially as a source of trend information.

C-5

All time series data put into the TMI-2 Data Base had to be in digital form, therefore, all the analog stripchart data had to be digitized. A special digitizing apparatus was used where the stripchart was mounted on an accurate x-y axis board. The x and y coordinate values were then fed directly into the computer by following the curve with a stylus which was periodically triggered. In order to reduce errors due to optical distortion in the microfiche, the stripchart was sometimes digitized in segments and then reassembled.

Enlarged color photographs were made of the multipoint recordings which were to be digitized, primarily for the first few hours. This was done to facilitate identification of the printed numbers. For long times after the accident, black and white microfilm could often be used once print identification had been made.

The first step in digitizing multipoint recorded data was to identify the channel number on the recording corresponding to each particular measurement channel. Using the color photographs it was possible to identify many of the blurred and partially printed numbers. In some cases the known color sequence of the numbers was used to aid in identification, although the color renditions were poor. In other instances it was necessary to search through the photographs to find one identifiable number then to literally follow the color print back and forth to identify its track. In still other cases the microfilm had to be used to find a clearly printed number which was then carefully followed and backward in time. Some channel numbers never were found and some channels were found which were not shown on the measurement

C-6

lists. There were cases where knowledge of the physical location of a monitor was used to find a comparable identified channel known to respond similarly. The most difficult part of digitizing the multipoint recordings was identifying the channel numbers.

The time base of each data set was undefined until the print frequency and paper speed were determined. Often the print frequencies varied somewhat between recorders even when they were running at the same speed. Generally it was necessary to establish speed and frequency using time notations written on the stripcharts. Occasionally some plant event could be used as a timing mark also but care had to be taken that lag-time was not significant. Some multipoint data had gaps where recorders had malfunction, paper had torn, etc. Many data sets originating from the multipoint recorders had to be reconstructed from a great deal of detective work both on the amplitude and time base.

3. Plant Computer

The plant computer system at TMI-2 utilized a Bailey 855 computer linked with a smaller NOVA computer to form one integral system. The NOVA computer was an addition made by Metropolitan Edison Company to provide more capacity for balance-of-plant monitoring. The principal function of the computer system was to monitor plant parameters (approximately 3000) and to display them along with any related calculations. The parameter input signals were either analog or digital.

C-7

In performing its monitor function, the computer scanned 960 digital and 80 analog inputs every second. An analog parameter could be scanned on 1, 5, 15, 30, or 60 second intervals depending on its relative importance. Each second the computer scanned all the 1 second scan points, 1/5 of the 5 second scan points, 1/15 of the 15 scan points, and so on.

The computer had two output modes for the points it scanned -- an alarm printer and a utility printer. These were both automatic typewriters, and if either failed its output was automatically transferred to the other. A small cathode ray tube display was also provided which duplicated the output of the printers.

4. Alarm Printer

For all monitored parameters that had an alarm function, the alarm printer automatically printed an alarm message when the parameter had gone into an alarm condition, i.e., exceeded an alarm setpoint or changed state.

The printed alarm time was the real clock time when the computer scanned the parameter and found it in an alarm condition. Note, that a parameter on a 60 second scan rate which exceeded its alarm setpoint immediately after a scan would be in the alarm condition for 60 seconds before the computer recorded the alarm. If a parameter were to exceed its alarm setpoint and then return within the setpoint between two consecutive scans, the computer would not record the alarm condition.

C-8
The alarm inputs were stored by the computer in an alarm-backup-buffer until they were printed. This buffer could store up to 1365 alarm inputs before it was filled. The alarm printer could only print one alarm every 4.2 seconds. If alarms were occurring at a faster rate, the printer got further and further behind, and the alarms would be printed minutes after they were recorded. (At one point during the TNI-2 accident the alarm printer was at least 161 minutes behind.) After the buffer was filled (i.e., 1365 alarms were waiting to be printed) the computer program was designed to print the message "Alarm Monitor Holdup" indicating that future alarms would not be stored until some of the 1365 backlogged alarms were printed. These unstored alarm would never be printed. The operator did have the option of suppressing the alarm sequence. This erased all old alarms from the computer memory and caused it to start printing new alarms which originated after the suppression. At one point in the accident this is exactly what happened.

5. Utility Printer

The utility printer provided output on request. The value or condition of any monitored parameter could be requested. Special subroutines allowed the operator to request output values in specific preprogrammed groups called "Operator Special Summaries" or to trend output values in preprogrammed groups called "Operator Group Trends".

C-9

The computer was also programmed to record automatically all changes in state of a predesignated group of parameters called "Sequence of Events" inputs. These event inputs were stored in the computer and could be printed on request. This particular computer function did not use the scan process described above, but used a continuous monitoring process which enabled it to print the exact time that the "Sequence of Events" inputs occurred. The sequence was started by any one of the "Sequence of Events" inputs changing state and continued until printed by the operator.

Another feature programmed into the computer was the "Memory Trip Review". Triggered by a reactor or turbine trip, this routine recorded a set of predesignated parameter inputs for 15 minutes before and 15 minutes after the trip. This information was stored until the operator requested that it be printed.

The plant computer provided the operator with an efficient means of keeping logs and showing trends on a large number of plant parameters under normal operating conditions. The computer was not designed to accommodate the data needs of the operator in an accident situation. Using the computer in an accident situation required that the operator to leave his control panels in order to request computer output; it took the computer several seconds to supply the requested output; and the automatic alarm printout was often several minutes behind real time. All of these tended to limit the computer's usefulness in an accident situation.

C-10

6. Periodic Log

Data from the plant computer were also recorded on the periodic log which was printed out once each hour. Some very useful data were extracted from the periodic log although some of it was also printed out elsewhere. The periodic log data were automatically printed out every hour and annoted to the minute.

٠

APPENDIX D METHODOLOGY FOR DATA QUALIFICATION AND UNCERTAINTY

The determination of the data quality category and the uncertainty analysis are the two basic steps necessary to fully describe any data set. These two functions are interrelated in performance as well as in presentation of the data. The quality category of the data cannot be determined until the uncertainty has been determined or it has been decided that uncertainty is uncalculable. This appendix is not intended to explain the methodology. Reference D3 gives a very detailed explanation of the methodology along with examples of how to use it. The purpose of this section is to give a brief overview of the analysis method for individuals who are familiar with uncertainty analyses methods.

A first step in determining data quality and uncertainty is to inspect the data of interest. Although this may seem obvious, it often saves the detailed labor of doing an uncertainty analysis. Detailed examination of the data can reveal such things as offsets, enigmas, and gross inconsistencies. Before doing an uncertainty analysis one should make a value judgment about the uncertainty in the components which make up the measuurement circuit. For example, if there are no calibrations available for a stripchart recorder and no redundant data for comparison, it may be that the uncertainty in that data would be extremely large or uncalculable. Another example might be that an uncertainty analysis would be inappropriately expensive on a particular

measurement and an alternate measurement should be sought. In other words, the determination of data quality and uncertainty is not a rote process but is one where a preliminary review of the data should be made before work begins.

If the preliminary investigations reveal that the data is of poor quality but does contain some useful information, the quality category will be Trend and no further effort need be expended.

The purpose of assigning quality categories to all the data sets was to provide generic descriptors for the data user. These descriptors tell the user about the quality of the data without his having to look up the specific uncertainty values. These main data quality descriptor terms are "Qualified" and "Trend". It is unfortunate that the word "Qualified" was selected because there is sometime confusion between the descriptor "Qualified", the adjective "quality" and the verbs "qualified" and "gualifying".

1. Uncertainty Analyses

The usefulness of any data obtained by measurement of physical phenomena depends upon a knowledge of the degree of uncertainty in the data. There are a number of acceptable methods of determining and presenting uncertainty and the method advocated by Dr. R. B. Abernathy[D-1,D-2,D-3] for the basis of our work. In doing the uncertainty analyses on TMI-2 data we found a serious shortage of support information was encountered, e.g., circuit diagrams, calibration

schedules, instrument manufacturer specifications, and block diagrams. In addition, it was nearly impossible to obtain any statistical error information. In most cases the individual circuit errors had to be taken from TMI-2 Instrument Calibration Sheets which merely specified a "tolerance" for the circuit, i.e., a bias error. As work progressed it became obvious that nearly all the errors being found could be interpreted as bias error. In addition, many errors had to be estimated and these also fell into the bias error category. It was expedient, therefore, to treat all errors as bias which were a function of range. This greatly simplified the calculation of uncertainty and also simplified the presentation of uncertainty in the data base.

There were several cases, such as the hot leg mass flowrate measurement, where uncertainty had to be expressed as a function of time. This was a result of the calculated nature of the data and uncertainties due to other parameters (such as voiding in the hot leg).

2. Analysis Procedure

Separate uncertainty bounds have to be generated for measurement data and for any parameters calculated using these data. A measurement system generally consists of a transducer, a signal conditioning unit, and a data acquisition and recording system (which are called elemental components). The analysis for determining measurement uncertainties, therefore, consists of determining the elemental component errors and combining them properly. When uncertainty is determined for a calculated parameter, the individual measurement data uncertainties

are combined to give the total uncertainty. The general procedure to follow in performing measurement and parameter uncertainty analyses is as follows:

- 1. For each measurement, list every source of error, e.g., calibration errors, data acqusition errors, data reduction errors.
- 2. The elemental error of a measurement should be converted to a bias error and given as a function of instrument range. A conservative substitution may have to be made to replace a statistical error with a bias error. A bias error usually must be established by nonstatistical methods.
- 3. Calculate the bias error (B) at the elemental level.
- 4. Calculate the elementary data uncertainty.
- 5. Analyze the equation by which the final answer will be obtained. It is necessary to propagate the errors for a calculation parameter.
- 6. Propagate the bias limit to the desired result using the Taylor series expansion and root sum square (RSS) technique.
- 7. Calculate the uncertainty.

3. Definitions

<u>Measurement Error</u>. All measurements contain errors which are defined as the difference between the measured values and the true values. These errors in measurements usually contain two separate components - a bias (also called fixed or systematic) component (B) and a random or sample standard deviation component (S). As mentioned previously, the uncertainty analyses was done only with bias errors.

<u>Bias Error.</u> In practice most measurements will have many sources of bias error; e.g., data acquisition, data reduction and calibration. All bias errors which are known and can be economically removed are removed. This leaves bias errors which are not well defined but must be accounted for in the calculation of data uncertainty. In practice bias errors for elemental sources are often estimated. As long as none of the biases are extremely large relative to each other, the root-sum-square is a very good approximation of the total bias error effect.

$$B = \sqrt{\sum_{j=1}^{r} B_j^2}$$

In most cases the bias error is equally likely to be either plus or minus from the measurement. Whether the bias error is positive or negative is not known, and the estimate reflects this. The bias error is estimated to be the extremes of the possible bias error range.

Determination of the exact bias value in a measurement requires a comparison of the true value with the measured value. Because the true value is never known, such a comparison is virtually impossible. Therefore, the bias errors are estimated and are taken from nonstatistical special tests and data where obtainable.

Deciding whether a particular error should be considered random or bias is sometimes difficult. An acceptable criterion is: any error that has to be estimated is bias and any error determined statistically is random. This definition assumes that all known bias errors have been removed if possible.

<u>Uncertainty</u>. Uncertainty is a description of the numerical bounds of a measurement error. The true value of a measurement is predicted with some confidence to lay within the bounds. Uncertainty is an aribtrary substitute for a statistical confidence interval and can be interpreted as the largest expected error.

A rigorous calculation of confidence level or the coverage of the true value by the interval is not possible in this work because the distribution of bias errors and limits, based on judgment, cannot be rigorously defined. Monte Carlo simulation of the intervals can provide approximate coverage based on assuming various bias error distributions and bias limits. As actual bias error and bias limit distributions are seldom known, simulation studies performed were based on a range of assumptions^[A-3]. The result of these studies indicated that the methodology used in the TMI data analysis gives a reasonably accurate confidence level of 95% that the true value of a measurement would fall within the uncertainty interval.

Propagation of Uncertainty. The Taylor series and the RSS method are used to propagate measurment errors when calculating a parameter from measurement data; e.g., Z = f(x,y). The assumptions made when using the equations derived from the Taylor series presented in this summary are:

- Z = f(x,y) and the functions to be considered are restricted to 1. smooth curves in a neighborhood of the point with no discontinuities.
- 2. The combined bias errors each have approximately a normal distribution.
- 3. The variables x and y are independent.

series)

See Reference 3 for details. The equations in Table D-1 can be used in the uncertainty analyses provided all the assumptions are met.

TABLE 1

UNCERTAINTY ANALYSIS EQUATIONS

Elemental bias (b)	Judgment supported by special test data	Estimated to a 95% confidence limit for bias error
Measur em ent bias (B)	Elemental bias	$B = \sqrt{\sum_{j=1}^{n} b_j^2}$
Parameter bias (B, from Taylor	Measurement bias values and the	$B_{z} = \sqrt{\left(\frac{\partial f}{\partial x} - B_{x}\right)^{2} + \left(\frac{\partial f}{\partial y} - B_{y}\right)^{2}}$

parametric function z =

f(x,y)

4. Data Categorization

Determining the data qualification category and uncertainty analysis are tasks which in practice are often interwoven. An uncertainty analysis generally must be made before the qualification process can proceed but sometimes the obvious quality of the data may preclude having to perform an uncertainty analyses. Generally the same analyst performed the uncertainty analysis and assigned the data quality category. The Data Integrity Review Committee (DIRC) reviewed all work by the individual analyst. The DIRC had the responsibility for allowing only properly reviewed and approved data to be put into the TMI-2 data base.

The process for determining the qualification levels of the remaining data consisted of several functions which were not necessarily performed in the order given here: (1) the uncertainty analyses results were reviewed and in most cases the analysis itself supplied useful information or insight on the measurement, (2) the single measurement channel was reviewed to determine whether the measurement channel output represented the expected, predicted or required response, (3) the data were examined for consistency with single channel analysis criteria, i.e., range and noise limits, time response and correlation with significant plant events, consistent with preaccident data, etc., (4) a comparison was made where possible between the measurement and thermal-hydraulic theory, (5) the redundant data was compared. These comparisons took the form of:

- Direct redundancy--Comparisons of multiple measurment of the same physical phenomena. Direct comparison is limited by factors such as physical state, measurement environment, spatial proximity of sensors, and transducer response characteristics.
- 2. Analytical redundancy--Dissimilar measurements can be compared when data transformations into a common reference frame are possible. An example is the comparison of differential pressure and fluid velocity data after their conversion to mass flow rate.
- 3. Historical redundancy--Past performance of individual or groups of measurements under given operating conditions is a powerfuel asset in identifying anamalous measurement performance.

As a result of examination, one or more of the categories or qualification levels defined below was assigned to each measurement, as a function of time, by the DIRC with input from appropriate analysts and data integrity specialists.

Qualified Data

Data that are qualified have met the following criteria:

- 1. All calibration corrections have been applied.
- The data have been compared with independent redundant data and found to agree within the specified uncertainty limits.

D- 9

.

- 3. The data have been verified to represent the physical parameter being measured.
- 4. Engineering unit conversions have been made.
- Uncertainties have been established for the 95% confidence level when possible.

<u>Trend Data</u>

Data have been verified to approximately represent the absolute level in the phenomenon measured because of one or more of the following:

- Instrument calibrations do not adequately represent the environment which the transducer measures.
- The calibration or performance of the measurement channel is suspect but the data still contains some useful information.
- 3. Uncertainty limits cannot be adequately quantified.
- 4. The measurement channel performance is thought to be relatively correct, but there are some anomalies in the data.
- 5. Environmental effects cannot be adequately compensated.

Failed Data

The failed classification is applied to data from which useful information is irretrievable due to a failure in the measurement system such as:

- 1. Transducer failure.
- 2. Signal conditioning failure.
- Inadequate rejection of extraneous noise, transients, or frequencies.
- 4. Loss of sync, data channel, continuity, etc.
- 5. Enigmas in the data.

Failed data will never be presented.

Not Reviewed Data

Data which were not reviewed received this notation. This classification occurs when a measurement has no relevance to analyses objectives. This category will be found only on the Measurement Data List (MDL) contained in Appendix E. D-1. R. B. Abernathy, R. P. Benedict, "Measurement Uncertainty: A Standard Methodology," ISA Transactions, Vol. 24, Number 1, 1985.

.

- D-2. R. B. Abernathy, et. al., "Measurement Uncertainty Handbook," AEDC-TR-73-5, Revised 1980.
- D-3. Measurement Uncertainty for Fluid Flow in Closed Conduits, ANSI/ASME MFC-2M-1983.

APPENDIX E

DATA UNCERTAINTY ANALYSES AND QUALITY CATEGORIES

This appendix contains letter and reports that give details of the uncertainty analyses made of specific data sets. These documents are all technically nonreferencable, i.e., they have not been published or distributed. Regular TMI-2 referencable documents are not contained herein because they are already available to users of this Data Summary Report. The TMI-2 Data Base references material both in this appendix and published documents. This appendix also includes an abbreviated Measurements Data List (Table E-1) which shows which of the TMI-2 measurement data were reviewed and which were not.

INTEROFFICE CORRESPONDENCE

Date: Sept 15, 1987

To: D. W. Golden

From: Yasushi Nomura

Subject: NEW EVALUATION OF UNCERTAINTIES FOR ESTIMATION OF LETDOWN COOLER VOLUMETRIC FLOWRATE - YN-3-87

Recently R. D. McCormick cited in his letter, QUALIFICATION OF TMI-2 DATA -RDMC-15-87, that the uncertainty values of letdown cooler outlet temperature, MU-TE-739-M and MU-TE-740-M, were estimated to be $\pm 1.0\%$ based on data from the strip chart recorder MP-010. I have reviewed throughly the previous report on estimation of the letdown cooler flowrate, in which data uncertainty was given 2% for the letdown cooler outlet temperature. Subsequently, I performed uncertainty calculations for the letdown cooler flowrates at every minute. The maximum uncertainty was found to be some 24.6% at 95% confidence level throughout 300 min into the accident as shown in the attached document.

Attachment: As Stated

> cc: J. M. Broughton J. L. Anderson R. D. McCormick R. W. Brower E. L. Tolman P. Kuan N. Ohnishi Y. Momura File

Central File

"Providing research and development services to the government"

NEWLY EVALUATED UNCERTAINTY FOR LETDOWN COOLER VOLUMETRIC FLOWRATE

September 15, 1987 Yasushi Nomura

1. INTRODUCTION

Estimated results on the Letdown Cooler (LC) flowrates during the TMI-2 accident up to 300 min were reported in the document, YN-4-86, issued on December 10, 1986. In that document, uncertainty analyses were performed with limited knowledge of error sources, taking a few representative time-points to calculate propagation of errors to the letdown cooler flowrates. Recently, error estimation for the letdown cooler outlet temperature was made and the results show that the error attributed to the outlet temperature should be replaced from 2% to 10%. Consequently, uncertainty analyses for the letdown cooler flowrates were performed with the newly evaluated input-data errors. Results of the uncertainty analyses for every 1-minute time-point are shown in this report.

2. UNCERTAINTY ANALYSIS

It s assumed that the heat removed in each cooler is calculated from the following equation for a counter-flow heat-exchanger (1)

 $g = Uh \rightarrow [(Tti - Tso) - (Tto - Tsi)] / Ln](Tti - Tso) / (Tto - Tsi)]$

where q =heat transfer in each cooler UA = overall conductance Ttl=letdown-cooler (tube-side) inlet-temperature Tto=letdown-cooler (tube-side) outlet-temperature Tsl=cooling-water (shell-side) inlet-temperature Tso=cooling-water (shell-side) outlet-temperature A heat balance on the tube side becomes as follows. • (2) $q = Wld \cdot Cpt \cdot (Tti - Tto)$

where Wld=letdown mass flowrate Cpt=letdown (tube-side) water specific heat

Similarly, a heat balance equation on the shell side can be derived as follows.

(3) $\mathbf{q} = \mathbf{W}\mathbf{c} \cdot \mathbf{C} \mathbf{p} \mathbf{s} \cdot (\mathbf{T} \mathbf{s} \mathbf{p} - \mathbf{T} \mathbf{s} \mathbf{i})$

where Wc=cooling-water mass flowrate Cps=cooling (shell-side) water specific heat

Uncertainty of the estimation of the LC flowrate is related with propagation of errors of measured data and assumed data given in the equations (1) ~ (3). Possible error sources and their values are evaluated as follows to give 95% confidence levels.

• Overall conductance UA $(0.8 \times 10^5 \text{ Btu/hr}^{\circ} \text{ F})$ has an error of 10% from engineering judgement. • Uncertainty of the letdown cooler inlet-temperature Tti (supposed to be the cold-leg 1A temperature RC-5A-TE2-R), is 2%. • The letdown cooler outlet-temperature were measured on MU-TE-739-M and MU-TE-740-M. These measurement data were from the strip chart recorder MP-010 for which very little elaboration information existed. As a result, It was estimated that uncertainty values of the letdown cooler outlet-temperature were 10%. • The cooling water inlet-temperature Tsi was assumed to be 45° F based on measurement data of the intermediate cooling water temperature (45.6° F) at 237 min into the accident. Uncertainty value for the assumed cooling-water inlet-temperature is evaluated to be 30% based on comparison between calculation and measurement.

E-4

• Uncertainty of the assumed letdown-water specific-heat Cpt (1.20 Btu/lbm'F) is 20% according to the ASME steam tables referred with the temperature/pressure variation realized in the letdown cooler (70°F ~ 600°F, 600 psig ~ 2300 psig). • The cooling-water wass flowrates were assumed to be a constant value 25 kg/s, which is a design level. Its uncertainty is 10% from engineering judgement.

•Uncertainty of the cooling water specific heat Cps (1.002 Btu /lbm[•] F) is 1% based on the ASME steam table referred with the temperature/pressure variation realized in the cooling system.

In addition to the above error-sources and uncertainties, uncertainty of the specific volume $Sv (0.16 \text{ ft}^3 / \text{lbm})$ is 1%based on the ASME steam table referred to the real variation of temperature/pressure of letdown fluid.

Combining Eqs. (1), (2), (3), one can see that the letdown cooler volumetric flowrate V is basicly expressed to be an explicit function of the above-mentioned variables as follows.

(4)

V = f(Sv, Tti, Tto, Tsi, UA, Wc, Cpt, Cps)

Then, uncertainty analyses for the letdown flowrate are to be done by the following equation.

$$(5)$$

$$\delta V^{2} = [(\partial V / \partial Sv) \cdot \delta Sv]^{2} + [(\partial V / \partial Tti) \cdot \delta Tti]^{2} + [(\partial V / \partial Tti) \cdot \delta Tti]^{2} + [(\partial V / \partial Tti) \cdot \delta Tti]^{2} + [(\partial V / \partial UA) \cdot \delta UA]^{2} + [(\partial V / \partial Wc) \cdot \delta Wc]^{2} + [(\partial V / \partial Cpt) \cdot \delta Cpt]^{2} + [(\partial V / \partial Cps) \cdot \delta Cps]^{2}$$

Right-hand side of Eq. (5) consists of several square terms of product of partial derivative and variation concerning a variable. Actually this product is evaluated by obtaining the difference of the letdown flowrate values from Eqs. (1),(2),(3) with assuming the nominal and nominal-plus-error to the particular variable. The uncertainty thus obtained for the letdown cooler volumetric flowrate is associated with 95% confidence level as a result of the derivation method described above.

Calculated results of the letdown cooler flowrates are shown in Table 1 with errors accompanying with the flowrate values at every 1 minute in the accident. Since the letdown cooling system is comprised of two identical coolers with different outlet temperatures, calculations were made for each unit and then, sumed to obtain the total letdown cooler flowrate together with the accompanying error.

Table 1	Total Letdown	Cooler Volumet	cric Flowrate	versus Ti	me (Tsi=45°F)
Time(mim)	1ALDef. (gpm)	1BLDuf.(gpm)	Total LDmf.	+-Error (16	(gpa)
1	65	Ŏ	65	16	- Mare.
2	65	0	65 0	0	
4	Ŏ	Ŏ	Ō	0	
5	0	0	0	ŏ	
7	55	54	109	19	
8	65 76	58 66	142	24	
10	76	70	146	25 24	
11	71	67	138	24	
13	68	66	134	23 22	
15	66	65	131	22	
16	67 67	65 66	132	23	
18	69	66	135	24	
19	70 71	67 69	137	24	
21	72	71	143	25	
22	71 71	72 70	143	24	
24	70	69	139	24	
25 26	69 68	64	130	23	
27	67	63	130	22 22	
28	65	61	126	22	
30	66	61	127	22 22	
31 32	67	61	128	23	
33	68	62 63	130	23	
35	69	63	132	23	
36 37	69 70	64 64	133	23	
38	70	64	134	23	
39 40	57 64	62	126	22	
41	62	61	123	22 21	
42	58	57	115	20	
44	58	56	114	20 20	
45	58	55	113	20	
47	58	56 57	114	20 21	
49	61	58	119	21	
50	63 64	59 60	122	21	
52	64	61	125	22	
53 54	64 64	62 *	125	22	
55	63	62	125	21	
56 57	64 64	61	125	22	
58	64	61	125	22	
59 60	67	63	130	22	
**	-				

(T- 1-45'E)

۲

Table 1 (continued)

TWDIG I (C				A-Frent (SDM)
Time(min) 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 120 120 120 120 120 120 120 120	LALDmf. (gpm) 67 68 68 69 69 69 69 69 69 69 69 69 69 70 70 72 73 73 73 73 72 70 66 62 60 59 59 59 60 61 63 64 64 64 64 63 61 59 59 59 59 59 59 59 60 61 63 67 69 72 73 73 73 73 73 72 70 70 70 70 70 72 70 70 70 72 73 73 73 73 73 73 72 70 66 67 69 59 59 59 60 61 63 64 64 64 64 64 64 63 61 59 59 59 59 60 61 63 67 72 73 73 73 72 70 70 70 70 70 72 70 70 70 70 72 73 73 73 73 73 72 70 66 69 59 59 59 59 60 61 61 63 67 69 72 72 73 73 73 73 73 73 73 73 73 73 73 73 73	<pre>1BLDmf.(gpm) 63 64 64 65 65 65 65 65 65 65 65 65 65 65 65 65</pre>	Total LDmf. 130 132 132 133 134 134 134 134 134 134 135 136 139 140 141 140 138 131 124 120 118 117 118 117 122 125 126 126 125 126 126 125 122 125 126 126 125 122 131 136 139 140 139 140 139 140 139 140 139 140 139 139 140 139 140 139 140 139 139 140 138 137 136 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 136 137 138 137 136 137 136 137 136 137 138 137 138 137 138 137 136 137 138 137 138 137 138 137 136 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 138 137 136 137 136 137 136 137	<pre>+-Error (spm) 22 23 23 23 23 23 23 23 23 23 23 23 23</pre>

¥

Table 1 (continued)

Time(mim)	IALDuf. (gpm)	1BLDmf.(gpm)	Total LDmf.	+-Error (gpm).
122	69	67	136	24
123	69	68	137	24
124	6 9	67	136	24
125	69	67	136	24
	67	66	133	24
127	62	65	130	23
120	60 60	D9	127	23
120	50	59 59	121	21
131	57	50		21
132	56	56	112	20
133	55	55	iiõ	20
134	55	55	i 10	20
135	55	55	110	20
136	55	55	110	20
137	55	55	110	20
138	55	55	110	19
139	55	54	109	20
140	54	54	108	20
	3J 52	3J 51	105	20
143	53		103	19
144	51	51	103	19
145	46	50	96	18
146	39	50	89	18
147	37	50	87	19
148	42	48	90	18
149	45	45	90	18
150	47	46	93	18
151	49	47	96	18
152	50	49	99	18
133	51	50		19
155	52	51	103	20
156	53	52	104	19
157	53	52	105	19
158	54	53	107	19
159	54	53	107	20
160	54	54	108	20
161	55	54	109	20
162	57	55	112	21
163	60 62	5/	117	21
104	50 55	28	122	22
165	70	65	120	23
167	72	68	140	27
168	74	70	144	26
169	75	72	147	26
170	75	72	147	26
171	75	7 3	148	26
172	76	74	150	26
173	77	74	151	27
174	84	81	165	30
1/3	/ 5 7 0	/ J 75	153	27
1/0	/ 5 79	/ J 76	123	27
179	7 0 80	76	133	21
179	R 1	27	150	20 90
180	81	77	158	20 98
181	81	78	159	20 28
182	80	77	157	28

•

•

Table 1 (continued)

Time(min) 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232	IALDmf. (gpm) 79 79 79 79 79 79 75 75 74 74 74 74 74 74 74 75 76 75 74 74 75 76 75 74 74 75 76 75 77 78 79 78 79 78 79 78 79 78 75 76 76 75 74 74 75 76 75 74 74 75 76 75 74 75 76 75 76 75 74 75 74 75 76 75 76 75 74 75 76 75 76 76 75 74 75 76 75 76 76 75 76 75 76 76 75 76 76 75 76 76 75 76 76 75 76 76 76 77 78 79 78 79 78 75 73 72 70 68 67 65 64 63 62 60 57 56 50 51 53 54 55 56 57 58 57 57 58 57 57 58 57 57 58 57 57 58 57 57 58 57 57 58 57 57 57 57 57 57 57 57 57 57	1 BLDmf. (gpm) 76° 75 75 75 74 73 72 71 71 71 71 71 71 71 71 71 71 71 71 71	Total LDmf. 155 154 154 154 154 154 154 149 147 146 145 145 145 145 145 145 145 145	+-Error (gpm) 28 27 28 27 27 26 26 26 25 25 25 25 25 25 25 25 25 25
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243	51 53 54 55 56 57 58 59 60 62 0 0 0 0 0 67 68 69	50 51 52 53 54 56 57 58 59 60 0 0 0 0 0 0 0 0 0 0 65 67 67	104 106 108 110 113 115 117 119 122 0 0 0 0 0 0 0 132 135 136	20 20 21 21 22 22 22 23 0 0 0 0 0 25 26 27

.

Table (continued)

Time(min)	ALDaf. (gpm)	1BLDmf.(gpm)	Total LDef.	+-Error (gpm)
244	70	69	139	28
243	70	68	139	27
247	70	58	138	27
248	70	50	1 3 8	27
249	66	65	130	26
250	65	64	129	26
251	60	64	124	24
252	54	65	119	24
253	52	65	117	24
204	6 0	66	126	25
233 256	50	65	131	26
257	70	67 67	134	26
258	71	62	137	27
259	71	70	141	27
260	72	72	144	28
261	76	76	152	29
262	81	80	161	31
203	86	89	175	34
265	90 90	100	190	37
266	117	121	210	41
267	138	129	230	47 54
268	146	140	286	59
269	147	140	287	59
270	151	143	294	61
271	154	147	301	63
272	157	152	309	65
273	143	158	307	65
275	136	100	303	64
276	132	141	302 272	09 52
277	126	121	247	50
278	115	109	224	45
279	106	101	207	41
280	103	95	198	40
201	101	93	194	39
282	99	90	191	38
284	99	88	197	38 20
285	99	87	186	30 37
286	99	87	186	38
287	90	87	177	36
288	78	87	165	34
289	71	85	156	33
250	(8 97	83	161	34
231	07 97	5ι 7Ω	108	36
293	86	77	103	13 25
294	85	76	161	35
295	86	76	162	35
296	87	76	163	35
297	75	76	151	33
238	64	/6	140	32
238 200	03 76	/ D 75	140	32
300		19	121	33

٠

•

٠

INTEROFFICE CORRESPONDENCE

Date:

To:

December 10, 1986

D. W. Golden

Yasushi

From:

Masashi homuno Nomura

Subject:

LETDOWN COOLER VOLUMETRIC FLOWRATE VERSUS TIME - YN-4-86

Attached is a final copy of the data estimation document for the letdown cooler volumetric flowrates. Calculation of the LC flowrates is performed by using simple heat-balance equations derived from a calculational model of a counter-flow shell/tube heat-exchanger. Estimated LC flowrates are improved by considering operator interviews and referring to alarm printer data.

yn Attachment: As Stated

cc: J. M. Broughton R. D. McCormick J. L. Anderson R. W. Brower H. E. Knauts P. Kuan E. L. Tolman A. Takizawa cc: Momura File Central File

"Providing research and development services to the government"

á

ESTIMATION OF THE LETDOWN COOLER VOLUMETRIC FLOWRATE VERSUS TIME

•

:

December 1986

Yasushi Nomura

.

to the temperature suitable for demineralization. Heat in the letdown coolers is rejected to the intermediate closed cooling water systems.

The intermediate closed cooling water system is a closed loop system that provides cooling water for various components in the reactor building. The components are 2 letdown coolers, 4 reactor coolant pump cooling jackets and 8 coolers, and 69 control rod drive coolers. Heat is transferred in those components and rejected to the river water cooling system in the intermediate coolers.

When two out of three pressure switches are tripped, signifying high reactor building pressure, the components included in the actuation trains for reactor building isolation and cooling will automatically go to their engineered safety features (ESF) position. When this occurs, MU = V2A and MU = V2B focated on the outlets of the fetdown coolers together with MU = V376 shown in figure 1= will be closed, thus resulting in fluid stagnation in the letdown line. During the accident up to 300 min, the ESF actuation due to high reactor pressure was initiated at 235, 6min, for some five win, according to the SOE table.

3 . ESTIMATION PROCEDURE

It is assumed that the heat removed in each cooler is calculated from the following equation for a counter-flow heat-exchanger[1]. (1) q = UA + [(Tti-Tso)-(Tto-Tsi)]/Ln[(Tti-Tso)/(Tto-Tsi)]

where q =heat transfer in each cooler UA = overall conductance Tti = letdown-cooler (tube-side) inlet-temperature Tto = letdown-cooler (tube-side) outlet-temperature Tsi = cooling-water (shell-side) inlet-temperature Tso = cooling-water (shell-side) outlet-temperature A heat balance on the tube side becomes as follows. (2) $q = W ld \cdot Cpt \cdot (Tti - Tto)$

where Wld=letdown mass flowrate Cpt=letdown (tube-side) water specific heat

Similarly, a heat balance equation on the shell side can be derived as follows.

(3)

```
q = Wc \cdot Cps \cdot (Tso - Tsi)
```

where Wc=cooling-water mass flowrate Cps=cooling (shell-side) water specific heat

An iteration of Tso is performed with equations (1) and (2), first assuming the design specification $(175^{\circ} F)$ for Tso. In this case, Tti (supposed to be the cold-leg 1A temperature) and Tto are given by the measurement data. Measured Tto's are shown in Fig. 2.

Tsi is assumed to be 45°F based on the measurement data of the intermediate cooling water temperature (45.6°F) at 237min. into the accident. This assumption might be reasonable in consideration

of cold river-water at the accident time, i. e., March.

The design value of the conductance UA is 1.25×10^{5} Btu /hr[•] F, but due to the possibility of fouling, the actual value of 0.3×10^{5} Btu/hr[•] F [2] obtained prior to the accident is used in the calculation. Cooling-water mass flowrate Wc is assumed to be design level of 25 kg/s (1:984×10³ lbm/hr) [2]. Cooling -water specific heat Cps is fixed at 1.002 Btu/ibm[•] F, taken as a 45° F-200psig value (design pressure value) from the ASME steam tables[3].

Convergence of the iteration is rapid and gives a precise value of Tso with convergence allowance of 1°F. Subsequently, the letdown mass flowrate Wld is obtained from equation (2) with the converged

E-16

2 HU-TE-740-H

1 MU-TE-739-M

E-17

-

q value. In this equation, letdown water specific heat Cpt is fixed at 1.20 Btu/lbm^{*} F, taken as an average value from the ASME steam tables in consideration of variation of temperature and pressure inside tubes of the letdown cooler.

£

Specific volume Sv for use in conversion from mass flowrate to volume flowrate is fixed at 0.016 ft³ /lbm, taken from the ASME steam tables. This is supposed to be an average value at the outlet of letdown cooler.

A computer program using BASIC language has been developed to facilitate the calculational procedure described above.

4. ESTIMATED RESULTS

Estimated results of the LC-1A flowrates together with the measured LC inlet/outlet temperatures and the calculated CW outlet temperatures are listed in Table 1 at every minute after the initiation of the accident. In the same way, estimated results of the LC-1B flowrates are listed in Table 2. Total letdown cooler flowrates are obtained as the sum of the two LC flowrates to be net fluid-flowrates through the letdown line, and listed with the mixed-fluid temperatures in Table 3.

Comparison of the total flowrates with those predicted by Leung [2] using an assumed CW inlet-temperature of 35° C (95° F) is shown in Fig. 3. One can see that the present calculation predicts slightly greater flowrates than Leung does. Major differences are as follow. Leung's letdown flowrates take zero value during some periods of time, when the LC outlet-temperatures become lower than his assumed CW inlet-temperature of 95° F. On the other hand, the present calculation assumes 45° F for the CW inlet-temperature, which is always lower than the measured LC outlet-temperature. The LC flowrates are assumed to be zero in the present calculation when the letdown flow-line isolation valves MU-V2A, MU-V2B and MU-V376 are closed by the ESF actuation.

E-18

Table 1	Letdowa Cooler	iA Volumetric	Fiourate versu	is Time	(⊺s #4	15° F /
Time(min) 0 2	LCIn.Temp.(F) 561 576 579	LCOu. Temp. (F) 131 131 130	CKOu.Temp.(F) 132 132 132	LCVflo 66 65 65	s. (gps)	,
3 4 5 6 7	579 579 581 584 589	122 114 108 104 108	45 45 45 125	C 0 0 55	Note	•
8 9 10 11 12	595 594 589 587 585 582	134 161 160 155 148 139	135 143 143 142 140 137	63 76 74 71 68	Note	6
14 15 16 17 18	576 569 565 563 560	131 132 1 33 1 35 137	133 133 133 133 133	65 66 67 69		
19 20 21 22 23 24	557 554 552 551 550 550	140 142 143 142 140 138	133 133 133 133 133 133	70 71 72 71 71 70	Note	6 :
25 26 27 28 29	550 549 549 549 549 548	136 134 130 127 126	132 131 130 129 128	69 68 65 65		:
30 31 32 33 34 25	547 547 546 545 545 545	127 129 131 133 134	128 128 128 129 130	65 66 68 68		
36 37 38 39 40	546 546 546 546 546 546	136 137 137 131 124	130 130 131 130 128	69 70 70 67 64	Note	6
41 42 43 44 45	546 545 545 545 545 545	19 114 10 109 107	126 124 123 122 122	62 60 58 58 57		
47 48 49 50 5.	544 543 542 542 542 542	110 112 116 120	121 122 122 123 124 125	58 59 61 63 64		
5 5 5 5 4 5 5 5 5 5 5 5 5	543 544 545 546 547	124 24 23 122 22	126 226 226 226 226	64 64 63 64		
57 58 59 60	548 548 549 549	123 125 128 130	26 127 128 129	64 64 66 67		

٠

.

•

Ta	ыl	e	1	(co	n	t	i.	n	n	ρ	d)
	••	L	•	۰.	~ ~		•			•	с.	ч.	

Time(min)	LCIn.Temp.(F)	LCOu.Temp.	F) CNOu.Temp.(F)	LCVflow.(gpm)
61 62	549 549	132	129	68
63	548	134	130	68 68
65	548 546	134	130	68
66	545	134	130	69
57 68	544 543	135	130	69
69	543	135	130	69
70 71	543 543	135	130	70
72	543	138	131	71
73 74	542 541	145	132	73
75	542	144	132	73 Note 6
70 77	545	137	132	70
78	547	128	129	66 62
80	551	115	125	60
81	549 547	112	123	59 59
83	545	114	123	60
84	545 547	117	124	61 63
86	549	125	127	64
87 88	551 552	125	127	64 Note 6
89	554	121	127	62
90 91	555 556	115	126	58
92	556	110	123	58
93	558 560	112	123	59
95	556	122	127	63 67
97	547	136	. 30	69
98	543	141	131	72 73
100	535	142	131	73
101	533	142	131	73 Note 6
102	529	138	130	72
104	528 527	137	130	71 70
106	527	134	28	70
107	525 525	132	128	69 69
109	524	133	127	70
110	523	134	127	70 71
112	521	134	127	70
114	519	133	127	70
115	517	132	127	70 70
117	514	131	126	69
118	512	130	125	69 69
120	507	129	125	69
121	504	128	124	69

.

•

E-20
Table 1	(continued)			n. 101-81 ()
Tiermin 223 225 226 227 2290 2312334567 234567 2290 2312334567 23	Cln. Temp. 501 497 494 494 494 494 494 494 494 494 494	F LCOu. Tomp. 128 127 126 125 122 1:8 113 100 97 96 95 97 96 97 96 97 98 97 91 92 93 93 93 93 93 93 93	F) CNOU. Temp. (124 123 122 122 122 122 121 120 18 16 14 13 12 111 111 111 111 111 111	F) LCVflow. (gp*) 69 69 69 68 Note 6 65 63 60 58 57 55 55 55 55 55 55 55 55 55

•

4

•

iable i (con	cinued/	-		I CHE LOF	(snm)
Time(min) 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 228 229 230 231 232 233 234 235 236 237 238 229 230 231 232 233 234 235 236 237 238 229 230 231 232 233 234 235 236 237 238 229 230 231 232 233 234 235 236 237 238 229 230 231 232 233 234 235 236 237 238 229 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 235 236 237 238 239 230 231 235 236 237 238 239 230 231 235 236 237 238 237 238 239 230 231 235 236 237 237 238 237 238 239 230 231 235 236 237 237 238 237 238 237 237 238 237 237 238 237 237 237 238 237 237 237 237 238 237 237 237 237 237 237 237 237	LC1n. 1emp. (F) 446 446 446 447 455 463 470 476 480 483 478 475 473 472 473 474 467 458 448 438 429 419 407 398 391 386 380 370 364 359 354 348 346 336 330 325 324 322 323 453 452 449 445 436 320 325 324 326 330 325 324 326 330 325 324 326 330 325 324 326 327 328 329 453 453 452 449 445 436 320 325 324 326 320 325 324 326 320 325 324 326 320 325 324 326 326 320 325 324 326 327 328 326 329 324 326 320 325 324 453 452 449 445 458 449 445 458 449 458 346 336 320 325 324 326 327 328 328 329 453 453 452 449 445 458 449 445 458 459 354 326 326 327 328 326 327 328 326 329 326 329 326 320 325 326 320 325 326 453 452 457 457 457 457 457 457 457 457	LCUL Temp. (F 136 136 136 135 135 134 134 134 134 133 133 133 133	120 120 120 120 120 120 120 121 122 122	79977777777777777777777777777777777777	Note 6
236 237 238 239 240 241 242 242	393 387 375 363 354 348 333 321	97 97 97 97 97 97 96 95	45 45 45 45 96 94 93	0 0 0 67 68 69	Note 5

•

÷

Table 1 (con	tinued)			
Time(mim)	LCIs. Temp. (F)	LCOu. Temp. (F)	CNOu.Temp. (F)	LCVflow. (gpm)
244	308	94	91	70
245	308	93	91	70
245	307	93	91	69
247	305	93	80	70
248	303	93	90	70
243	329	92	32	00 65
251	333 298	52 95	90	50 50
252	325	75	87	54
253	321	73	85	52
254	3:8	82	87	60
255	318	91	90	66
256	315	92	90 `,	68
257	307	93	90	70
258	303	94	90	71
259	311	95	91	71
260	313	37	31	(2 76
201	317 218	103	9C 39	
263	310	103	96	86
264	301	115	96	90
265	298	122	96	98
266	296	139	100	117
267	297	155	104	138
268	289	156	104	146
269	288	157	104	147
270	285	157	104	150
271	280	157	103	154
2/2	2//	157	102	
213	213	132	101	145 Note b
275	273	140	99	132
276	272	140	98	131
277	270	135	97	125
278	270	128	95	115
279	267	. 20	93	106
280	265	117	92	103
281	263	114	91	101
282	261	1.2	90	100
283	260		90	99
209	237 954	10	53	38
205	257	109	99	30 Q Q
287	250	101	86	90
288	247	<u>90</u>	83	78
285	246	83	80	70
290	243	89	61	28
291	239	96	82	87
292	238	96	82	87
293	236	54	82	85
294	233	93	82	85
295	232	9 <u>3</u>	81	86
230	100 100	33	01 70	80 75
201 000	220	50 71	75	60 20
200 200	204	74	75	0J 25
200	550	83	76	0J 7 7
J V V		~ ~	v	i (

•

٠

ì

6

•

•

Table 2	Letdown Cooler	18 Volumetric	Flowrate vers	us Time (Tsi=45°F)
Time(min)	LCIn.Temp.(F)	LCOu. Temp. (F)	CNOu.Temp.(F)	LCVflow.(gpm)
O	561	104	45	0
1	576	104	45	0
2 3 4 5	579 579 581	104 104 104 104	45 45 45 45	0 Note 2 0
5 7 8 9	589 595 594	104 104 118 136	43 124 130 136	U 54 59 66
10 11 12 13	585 587 585 582 576	.46 141 136 133	138 138 136 135	68 67 65
15 16 17	569 565 563 560	130 129 130 131	133 132 132 132	65 65 66
19	557	132	131	67
20	554	136	131	69
21	552	141	132	71
22	551	143	133	72 Note 6
23	550	139	133	70
24	550	135	132	69
25	550	130	130	66
26	549	125	128	64
27	549	121	127	63
28	549	118	126	62
29	548	116	125	61
30	547	116	125	61
31	547	115	125	61
32	546	117	125	61
33	545	119	125	62
34	545	120	125	63
35 36 37 38 39	545 546 546 546	121 122 123 123	125 126 126 126	63 64 64 64 64
40	546	120	126	62
41	546	117	125	61
42	545	112	123	59
43	545	107	121	57
44	545	104	120	56
45	545	102	119	55
46	545	101	119	55
47	545	104	119	56
48	543	106	120	57
49	542	108	120	58
50	542	111	121	59
51	542	114	122	60
52 53 54 55 56	543 544 545 546 547	115 117 118 118	123 124 124 124	61 62 62
57	548	116	124	61
58	548	115	124	60
59	549	118	125	62
60	549	121	126	63

dere de colta

-'

Tabie 2 (c) 51 52 53 64 55 55 57 68 69 70 71 72	LCIn. Temp. (F 549 549 548 548 548 548 546 545 545 544 543 543 543 543 543	COu. Temp. () 122 123 124 125 126 126 126 125 125 125 125 125 125	F) CNOu. Temp. (126 127 127 127 127 127 127 127 127	F) LCVflow. (gpm) 63 64 64 65 65 65 65 65 65 65 65 65 65
73 74 75 76 77 78 80 81 83 84 86 88 89 91 93 95 99 99 99 99 99 99 99 99 99 99 99 99	542 541 542 543 545 545 545 545 545 545 556 556 556 556	129 131 132 132 132 132 132 132 132 132 132	28 128 129 129 129 129 129 129 129 129 129 129	Note 67 68 68 68 68 65 62 60 59 58 60 58 66 67 68
108 109 110 111 122 113 114 115 116 19 120 121	525 524 523 522 521 520 519 517 516 514 512 509 507 504	277 228 228 228 228 227 227 227 227 227	6666666655544333 1111111111111111111111111111111	67 67 68 68 68 68 68 68 67 67 67

٠

.

•

Table 2 (continued)

.

. -

_ ′

Time(min)	LCIn. Temp. (F)	LCOu. Temp. (F)	CKOu.Temp.(F) 123	LCVflow.(gpm) 67
$\begin{array}{c} \text{Time(min)}\\ 122\\ 123\\ 124\\ 125\\ 126\\ 127\\ 128\\ 129\\ 130\\ 131\\ 132\\ 133\\ 134\\ 135\\ 136\\ 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ 161\\ 162\\ 163\\ \end{array}$	LCIn. Temp. (F) 501 497 494 494 494 494 494 494 494 494 495 488 488 488 488 488 488 488 488 488 48	LCOu. Temp. (F) 124 123 122 121 119 117 115 109 103 100 98 96 96 96 95 95 95 95 95 95 95 95 95 95	CWOu.Temp.(F) 123 122 121 121 120 120 120 119 117 114 113 112 112 112 111 111 111 111	LCVflow.(gpm) 67 67 67 67 67 67 67 67 67 67
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182	474 476 473 468 469 466 462 457 462 462 457 462 455 455 455 455 455 455 455 455 455 45	91 93 98 102 108 114 119 122 125 126 127 128 128 128 128 128 128 128 128	107 108 109 111 113 115 116 116 116 117 118 118 118 118 118 118 118	54 55 57 59 62 65 68 70 72 72 72 73 74 74 81 75 76 76 76 77 78 77

٠

•

4

-

Table 2 (continued)

Time(mia)	LCIn. Temp. (F)	LCOu. Temp. (F)	CNOu. Jemp. (F)	LCVflow.(gpm)
183	446	130	118	76
184	446	130	118	75
185	446	129	1.8	75 75
186	447	128	110	/5
187	455	128	115	/9 70
. 55	463	128	110	73
163	4/0	128	. 1 3	71
101	40	127	20	71
92	483	127	20	70
193	478	127	20	71
194	475	127	120	71
:95	473	127	120	71
196	472	127	120	71
197	473	127	120	71
198	474	126	120	71
193	4/3		120	71
200	474	100	120	70
202	467	104	119	71
203	458	124	118	71
204	448	23	116	72
205	438	:22	115	72
206	429	:22	114	73
227	419	121	112	74
208	407	121	111	/ J 76
209	398	121	110	70
210	381	120	103	75 Note 6
444 21 9	380	113	105	74
2:3	370	109	103	72
214	364	104	100	70
215	359	99	9 8	67
216	354	96	97	66
	348	92	95	54
218	346	90	94	53
219	330	85	52 Q1	62 61
220	330	83	89	60
222	324	80	88	58
223	322	78	87	56
224	32 3	75	86	54
225	453	78	99	48
226	452	81	100	50
227	449	83	101	D .
228	440	60 96	101	J7 22
223	430	88	101	54
230	424	89	10:	55
232	419	90	101	56
233	412	91	:0:	58
234	403	62	101	59
235	397	93 •	100	60
235	393	94	45	0
23	387	34	45	U
238	375	34 0 <i>4</i>	40 AE	Note 5
233	J0J 254	94	43	0
240	334 748	95	36	¥
471 920	333	94	94	55
243	321	93	92	67

and a second sec

•

Table 2 (con	itinued)	•		
Time(min) 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 299 290 291 292 293 299 300	LCIn.Temp.(F) 308 307 305 303 329 326 321 318 318 315 307 303 311 315 307 307 303 311 315 317 319 307 301 298 296 297 289 288 285 280 277 275 275 275 275 275 275 275	LCOu.Temp.(F) 92 91 91 91 90 90 90 90 90 90 90 90 90 90	CWOu.Temp.(F) 90 90 90 91 91 91 91 91 91 91 91 91 91	LCVfiow. 'gpm' 68 68 68 68 65 65 65 65 65 65 65 65 65 65

Ŧ

÷

E-28

۰.

Table S	Total Letdown	Cooler Volumet	ric Flowrate	versus Tim	e (Tsi=45°F)
Table 3 Time(min) C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 C 23 C4 25 26 27 29 30 31	Total Letdown iALDmf. (gpm) 66 65 65 0 0 0 0 55 65 76 76 76 76 76 76 76 76 76 76	Cooler Volumet :BLDmf.(gpm) 0 0 0 0 0 0 0 0 0 0 0 0 0	ric Flowrate Total LDwf. 66 65 65 0 0 0 0 0 0 105 124 142 146 142 138 133 135 137 140 143 141 139 135 135 135 135 135 135 135 135	versus Tim Vix. Temp 131 131 130 130 130 130 106 106 106 126 149 153 148 142 136 130 131 133 134 136 139 142 142 139 137 133 129 126 123 121 122 123	Note 6
31 32 33 34 35 36 37 38 39 41 42 39 41 42 39 41 42 39 41 42 34 55 55 55 55 55 55 55 55 55 55 55 55 55	67 68 69 70 70 76 64 69 70 70 70 64 69 69 70 70 64 60 58 55 55 55 61 64 64 66 64 66 66 7 66 7 66 7 66 7 6	61 63 63 64 64 64 66 65 55 55 55 55 55 55 55 66 66 66 66	278 132 132 1334 13334 13334 13334 1336 13954 1346 1924 1556 1954 1954 1954 1954 1954 1954 1954 1954	1234 1267 122990 122990 12218 12200 1200 1	Note 6

.

Table 3 (co	ontinued)	
Time(min) 61 62 63 64 65	1ALDmf.(gpm) 67 68 68 68 68 68	1BLDmf.(gpm) 63 64 64 65 65
66	69	65
67	69	65
		6 7 N

۰.

1

`

Table 3 (continued)				
Time(min) 61 62 63 64 65 66 67 68 69 70 71 72 73	1ALDmf.(gpm) 67 68 68 68 69 69 69 69 69 69 69 69 70 71 72 73	1BLDmf.(gpm) 63 64 65 65 65 65 65 65 65 65 65 65 65 65 65	Total LDmf. 130 132 132 133 133 134 134 134 134 134 134	y 1 x. 1emp. (1 / 127 128 129 130 130 130 130 130 130 130 130	
74 75 76 77 78 79 80 81 82 83 83 84 85 86	73 72 70 66 62 60 59 59 60 61 63 64	68 68 68 65 62 60 59 58 58 58 59 61	141 140 138 131 124 120 118 117 118 117 118 119 122 125	138 Note 6 137 134 127 120 115 112 110 112 113 116 120 122 Note 6	
87 88 89 90 91 92 93 94 95 96 95 96 97 98 99 100 101 102 103 104	64 64 62 60 58 58 57 59 63 67 69 72 73 73 73 72 72 71	62 62 69 58 57 58 60 58 60 58 66 58 66 58 66 7 68 86 66 7 88 86 66 7 88 86 86 86 86 86 86 86 86 86 86 86 86	126 126 124 120 117 116 114 115 121 127 131 136 139 139 140 139 140 139	121 120 116 112 110 108 109 117 124 128 132 135 135 135 135 135 135 135 135	
105 106 107 108 109 110 111 112 113 114 115 116 119 120 121	70 70 69 70 70 70 70 70 70 70 70 69 69 69	68 68 67 67 67 68 68 67 68 68 68 67 67 67 67	138 138 137 136 137 137 139 138 137 137 137 137 138 137 136 136 136	132 Note 6 130 129 130 131 132 131 130 130 130 130 129 129 129 129 129 129 129 129	5

· · · · ·

.

Table	3 (continued)				
Time(mi)	a) IALDaf.(gp=)	1BLDmf.(gpm)	Total LDef.	126	r '
22	68	67	:36	125	
124	69	67	:36	124 122 Not	• 6
.25	68	67	135	20	ev
:26	6 7	65 65	130	118	
1-2	55 63	64	127	114	
129	60	61	121	108	
130	58	58		100	
131	57	57 56		97	
132	55	55	110	96	
134	55	55	110	90 95	
135	55	33 55	10	95	
136	33 55	55	110	95	
38	55	55	110	95	
139	55	54	109	93	
140	24	53	106	91	
142	52	52	104	90	
143	52	51	103	87	
144	51	50	96	81	
145	39	50	89	76	· •
47	37	49	86	/4 75 V	oto 4 -
148	42	47	90	76	
149	43	45	92	77	
151	49	47	96	81	
152	50	49	99	86	
153	52	51	103	88	
155	53	52	105	89	
156	53	52	105	90 90	
157	53 54	53	:07	91	
159	54	53	107	92	
160	54	54	108	92	
.51	55	55	112	96	
163	60	57	117	100	
:64	63	59	122	106	
165	66	62 65	:35	118	
166	72	68	40	:22	
.68	74	70	44	126	
169	75	72	47	128	
170	75	73	148	130	
172	76	74	150	: 30	
73	77	74	151	13.	
:7:	84	75	153	132	
1/5	78	75	153	133	
77	79	76	155	134	
:78	90	10 77	. 30 158	37	
179	01 81	77	158	137	
181	61	78	:59	: 37	
182	80	77	157	35	

:

•

•

.

٠

Table 3	(continued)	•				
Time(min) 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 207 208 209 210 211 212 223 224 225 227 228 230 231 232 233 235 236	<pre>IALDmf. (gpm) 79 79 79 79 78 77 76 75 75 74 74 74 74 74 75 76 76 77 78 79 77 75 73 73 73 73 73 73 75 76 50 51 52 54 55 56 57 58 59 60 61 0</pre>	1BLUmt. (gpm) 76 75 75 75 74 72 71 71 71 71 71 71 71 71 71 71 71 71 71	$\begin{array}{c} 155\\ 154\\ 153\\ 154\\ 153\\ 154\\ 145\\ 145\\ 145\\ 145\\ 145\\ 145\\ 145$	133 133 132 132 132 132 131 130 130 130 130 130 130 130 130 130	Note	6
237 238 239 240 241 242 243	0 0 0 67 68 69	0 0 65 66 67	0 0 132 134 136	96 96 96 96 95 94	N ote	5

×.,...

Table 3 (con	atinued)			
1 1 244 245 246 247 248 249 250 251 252 253 254 255 257 258 257 258 260 261 262 263 264 265 267 268 270 271 272 273 274 275 267 268 277 273 274 275 278 279 282 283 284 285 286 287 288 298 291 292 293 298 299 300 <td>IALDmf. (gpm, 70 69 70 70 66 65 60 54 52 60 66 68 70 71 71 71 72 76 81 86 90 98 147 138 146 147 150 154 157 148 39 135 131 255 135 131 255 135 131 255 154 57 89 98 98 98 98 98 98 98 98 98 98 98 98</td> <td>1BLDmf. (gpm) 68 68 68 68 68 68 65 65 65 65 65 65 65 65 65 65</td> <td>Total LDwf. 138 137 138 38 38 31 29 124 19 17 125 131 133 137 139 141 144 152 16: 175 190 210 238 267 286 287 292 30: 308 305 303 301 272 246 287 292 30: 308 305 303 301 272 246 287 292 30: 197 194 191 188 186 185 165 165 165 165 165 165 165 16</td> <td>Vix.Temp.('F) 93 92 92 92 92 91 92 93 87 83 82 86 90 91 91 92 95 97 103 109 114 120 129 140 152 154 155 155 155 155 155 155 155</td>	IALDmf. (gpm, 70 69 70 70 66 65 60 54 52 60 66 68 70 71 71 71 72 76 81 86 90 98 147 138 146 147 150 154 157 148 39 135 131 255 135 131 255 135 131 255 154 57 89 98 98 98 98 98 98 98 98 98 98 98 98	1BLDmf. (gpm) 68 68 68 68 68 68 65 65 65 65 65 65 65 65 65 65	Total LDwf. 138 137 138 38 38 31 29 124 19 17 125 131 133 137 139 141 144 152 16: 175 190 210 238 267 286 287 292 30: 308 305 303 301 272 246 287 292 30: 308 305 303 301 272 246 287 292 30: 197 194 191 188 186 185 165 165 165 165 165 165 165 16	Vix.Temp.('F) 93 92 92 92 92 91 92 93 87 83 82 86 90 91 91 92 95 97 103 109 114 120 129 140 152 154 155 155 155 155 155 155 155

•

E-33

.

٠

•

Notes for LC flowrates at Table 1, 2, 3

- Note 1. Judging from behaviour of LC 1A outlet-temperature, LC 1A isolation value MU-V2A had been closed during time-period from 2 min. to 6. 7 min. into the accident.
- Note 2. Judging from behaviour of LC 1B outlet-temperature LC 1B flowline had been stopped by closure of lineisolation value MU-V2B for the first 6.7min. into the accident.
- Note 3. According to the SOE tables, an operator initiated letdown flowrate at a rate greater than 160gpm in an attempt to reduce pressurizer level at 5min. into the accident. The estimated flowrates show there was some delay in the process reaction.
- Note 4. Sharp decrease of LC outlet-temperature during timeperiod from 140min. to 160min. might indicate flow-line stagnation caused by isolation valve closure. But there are no such operational records as the valve closure.
- Note 5. ESF was actuated due to reactor building high pressure at 235.6min.into the accident, and the operator defeated the ESF actuation at 240.2min. During this time period, the letdown flow was stagnated by the isolation valve closure.
- Note 6. Sharp decrease of LC outlet-temperature at this time probably indicates a significant decrease in the letdown flow -rate as aresult of operator action. However, there are no operational records which would verify control valve closure at this time.

lig. 3 Total letdown cooler volumetric flowrate versus time (Tsi=45')

5. UNCERTAINTY ESTIMATE

Uncertainty of the estimation of the LC flowrate is related with propagation of errors of measured data and assumed data used in the equations (1) \sim (3). Possible error-sources to be evaluated include the following.

- 1) Uncertainty of the letdown-cooler outlet-temperature Tto could be some 2% judging from the results of the primary loop temperature data review[4].
- 2) Uncertainty of the letdown-cooler inlet-temperature Tti could be also some 2% by the same reason as described above.
- 3) Uncertainty of the assumed cooling-water inlet-temperature Ts; is some 30 % based on comparison between calculated results and measurement data.
- 4) Uncertainty of the conductance UA could be set as high as 10% from engineering judgement.
- 5) Uncertainty of cooling-water mass flowrate Wc could be also set some 10% from engineering judgement.
- 6) Uncertainty of cooling-water specific heat Cps is as high as 1% based on variation of the steam-table value corresponding to the actual variation of temperature and pressure of the cooling water.
- 7) Uncertainty of letdown water specific heat Cpt is some 20% according to the ASME steam tables in consideration of rather wide range of actual variation of temperature and pressure $(70^{\circ} 7600^{\circ} F, 600)$ psig ~ 2300 psig) inside tubes of the letdown cooler.
- 8) Uncertainty of specific volume of letdown water is some 1% based on variation of the steam-table value corresponding to the actual variation of temperature and pressure of letdown water downstream.

After combining equations (1) \sim (3) and expressing the letdown mass flowrate Wld as an implicit function of (Tti, Tto, Tsi, UA, Wc, Cpt, Cps), the basic calculation of volumetric letdown-water flowrate Vld is as follows.

$$(4)$$

$$Vid = Sv \cdot F(Tti, Tto, Tsi, UA, We, Cpt, Cps)$$

Accordingly, uncertainty analysis equations are derived as follows,

$$\sigma^{2} = \left(\frac{\partial V I d}{\partial S v}, \sigma\right)^{2} + \left(\frac{\partial V I d}{\partial T t i}, \sigma\right)^{2}$$

$$+ \left(\frac{\partial V I d}{\partial T t o}, \sigma\right)^{2} + \left(\frac{\partial V I d}{\partial T s i}, \sigma\right)^{2} + \left(\frac{\partial V I d}{\partial U h}, \sigma\right)^{2}$$

$$+ \left(\frac{\partial V I d}{\partial T t o}, \sigma\right)^{2} + \left(\frac{\partial V I d}{\partial T s i}, \sigma\right)^{2} + \left(\frac{\partial V I d}{\partial U h}, \sigma\right)^{2}$$

$$+ \left(\frac{\partial V I d}{\partial W e}, \sigma\right)^{2} + \left(\frac{\partial V I d}{\partial C p t}, \sigma\right)^{2} + \left(\frac{\partial V I d}{\partial C p s}, \sigma\right)^{2} = (5)$$

The coefficients such as,

$$\frac{\partial V d}{\partial T ti}, \quad \frac{\partial V d}{\partial T ti}, \quad \frac{\partial$$

can be obtained by performing sensitivity study of the function Vid.

These values are evaluated to be 0.075gpm/* F, 0.45gpm/* F, 0.39gpm/* F, 8.6×10⁻⁺ gpm + hr + F/Btu, 4.6×10⁻⁵ gpm + hr/1cm, 63gpm + lbm +* F/Btu, 9.0gpm + lbm +* F/Btu respectively. The coefficient $\partial V I d / \partial S v_i$ is simply obtained from equation (4) to be a value of F, that is 8300gpm + lbm / ft³ at the maximum.

After giving uncertainty
$$\sigma^*$$
's evaluated accoding to the items
1) ~ 8) to the equation (5), the total uncertainty σ concerning
the estimation of LC volumetric flowrate is obtained as follows:
 $\sigma^2 = (3300 \times 0.016 \times 0.01)^2 + (0.075 \times 600 \times 0.02)$
Vid
 $+(0.45 \times 160 \times 0.02)^2 + (0.39 \times 45 \times 0.30)^2$
 $+(3.6 \times 10^{-4} \times 0.6 \times 10^5 \times 0.10)^2$
 $+(4.6 \times 10^{-5} \times 1.934 \times 10^5 \times 0.10)^2$
 $+(63 \times 1.20 \times 0.2)^2 + (9.0 \times 0.999 \times 0.01)^2$
 $\sigma = \sqrt{(1.403)^2 + (0.9)^2 + (1.44)^2 + (5.27)^2}$
Vid
 $\sqrt{10}$

= 18.6 spm

Uncertainty is an arbitrary substitute for a statistical confidence interval and can be interpreted as the largest expected error. The confidence level of the TMI-2 data uncertainty is approximately 95% as a result of the method used to calculate the total uncertainty.

After giving uncertainty
$$\sigma$$
's evaluates accoding to the items
1) ~ 8) to the equation (5), the total uncertainty σ concerning
the estimation of LC volumetric flowrate is obtained as follows:
e: = (0300×0.016×0.01)² + (0.075×600×0.02)⁴
Vid
+(0.45×160×0.02)² + (0.39×45×0.30)²
+(6.6×10⁻¹×0.5×10⁴×0.10⁴)²
+(4.6×10⁻¹×1.984×10⁴×0.10)²
+(63×1.20×0.2)² + (9.0×0.999×0.01)²
c = (1.403)² + (0.9)² + (1.44)² + (5.27)²
Vid
(6.80)² + (0.91)² + (16.31)² + (0.09)²

= 19.6 spa

Uncertainty is an arbitrary substitute for a statistical confidence unterval and can be interpreted as the largest expected error. The confidence level of the TMI-2 data uncertainty is approximately 25% as a result of the method used to calculate the total uncertainty.

INTEROFFICE CORRESPONDENCE

- Date: June 10, 1987
- To: D. W. Golden
- From: R. D. McCormick

Subject: OTSG MASS FLOWRATE INITIAL CONDITION - RDMC-15-86 - Revision

The attachment to this letter contains an analysis of the main feedwater mass flowrate measurements immediately prior to the accident. This initial condition is presented along with the qualification and uncertainty analysis.

jlm

Attachment: As Stated

- cc: J. L. Anderson
 - J. M. Broughton
 - R. W. Brower
 - H. E. Knauts
 - Y. Nomura
 - R. D. McCormick File
 - Central File

STEAM GENERATOR INITIAL CONDITION MASS FLOWRATE DATA ANALYSIS

The steam generator main feedwater flows were disrupted at the beginning of the accident sequence and remainded off beyond the time of interest for initial conditions (174 minutes). Therefore, the flowrates which are reported herein are the average measurements for two minutes prior to the accident. Each of the steam generators had a mass flow rate meter (SP-8A-FT and SP-8B-FT) with corresponding temperature (SP-5A-TE and SP-5B-TE) and pressure (FW-1135-PT and FW-1132-PT) measurements.

The flowmeter consists of a velocity head detector, a signal conditioning and amplifying section, a coolant density computation section, and recording on the reactimeter. The detector was basically a flow tube connected to a differential pressure transducer. The electronics used many of the same components as the RC mass flowmeter systems. The density calculation circuitry information was unavailable, so it was assumed to be identical to the RC system for this analysis.

The differential pressure signal was put through a square root extractor and then multiplied by the square root of the coolant density (and an appropriate constant) to produce the mass flowrate measurement.

The coolant temperature measured by the RTD was used to determine the fluid density from a curve which represented the square root of steam table values around the normal operating point (1000 psi and 460°F). The loop coolant mass flowrate was continually computed according to the equation $m = k \sqrt{p \pm P}$. Figure 1 is a block diagram of the mass flow measurement circuit.

Table 1 lists the measurement identifiers, the quality classification, and the uncertainty of the mass flowrate data. The "Qualified Data" is data which have established uncertainties, have been corrected for all known errors, and are considered a reasonably repeatable representation of the physical phenomenon being measured, i.e., the mass flowrate at the detector location.

Uncertainty is a description of the numerical bounds of a measurement error, and the true value of a measurement is predicted with some confidence to lay within these bounds. Uncertainty is an arbitrary substitute for a statistical confidence interval and can be interpreted as the largest expected error. The confidence level of the TMI-2 data uncertainty is near 95% as a result of the method used to calcualte the total uncertainty. The uncertainty analysis provided the numerical error bounds of the data.

A formal system exists for determining the uncertainty in the measurement data $[1^{-3}]$. Basically, this system consists of (1) compiling the useful data in a usable form, (2) gathering all available technical information on transducers, signal conditioning, and recording instruments, (3) gathering all available calibration data, (4) performing an uncertainty analysis on each measurement channel.

Information used in the uncertainty analysis came from Bailey Meter Company product instructions, TMI-2 calibration records, Rosemount Engineering Company specifications, and engineering estimates.

FIGURE 1

- 3-

STEAM GENERATOR FEEDWATER FLOWMETER SYSTEM

TABLE 1

-4-

FEEDWATER MASS FLOWRATES AT ZERO ACCIDENT TIME

Measurement	Time (min)	Value (MPh)*	Qualification <u>Classification</u>
OTSG-A (SP-8A-FT)	0	5.74 <u>+</u> .10 <u></u> 6	Qualified
OTSG-B (SP-8B-FT)	0	5.69 <u>+</u> .106	Qualified
Loop A + Loop B	0	11.43 ± .15	Qualified

*Units are millions of pounds mass per hour.

E-48

.

.

TABLE 2

Item	Error	Comment
Transmitter[a] Accuracy[b] Drift[b] Calibration[b] Temp Sensitivity[b]	. 25% . 30% . 25% . 25% . 5%	Range Range Range Range Range
Square Root Extractor ^[a]	. 5%	Range
Multiplier	. 5%	Range
Fixed Signal[a]	.05%	Range
Reactimeter	. 1%	Range

UNCERTAINTY IN DIFFERENTIAL PRESSURE

 $B^{2} = (.25)^{2} + (.3)^{2} + (.25)^{2} + (.5)^{2} +$

B = .9887% or .4198 psi.

a) Transmitter had maximum range of 42.46 psi or 1175.21 in. H₂O found in TMI-2 Instrument Calibration Data Sheets for SP-8A-DPT1 Type BMC 6241X-A. From the United Engineers Instrument Data Sheet was found the flow tube, a Badger Style PM-F 20 in. 0 to 6.5×10^6 lbm/hr. Both these sources are hard copy.

b) From microfiche of RC-14A- DPT1 which is assumed to be similar to SP-8A-DPT1. Design and performance specs and instrument calibration data sheets are sources. All specs were at 75°F. Reactor building was at 129° F and unit had a sensitivity of 0.01% range per °F.

-6-

TABLE 3

UNCERTAINTY OF DENSITY

Item	Error	Comment
Feedwater Temp[a]	.27%	Reading
Temp Compensation ^[b]	.25%	Reading
Function Generator ^[c]	.25%	Range[e]
Multiplier ^[c]	. 5%	Range[e]

B[d] = .6693% or .342 lbm per ft³

a) This error is due to the fact that the temperature compensation is made with a temp error in it. This is an estimate based on circuitry found in the RC mass flow meter and an error of \pm 1.8 ^oF.

b) This is due to error in electronically fitting the steam table curve for calculating density from temperature.

c) From TMI-2 Instrumentation Calibration Data Sheets the Multiplier was included again because it is a dual input single output device.

d) The density was 51.1 lbm per cu ft.

e) Because the range of the density circuitry is unknown, it is expendient to treat all as reading errors.

-7-

TABLE 4

OTSG MASS FLOWRATE UNCERTAINTY

Equations

 $\hat{\mathbf{m}} = \mathbf{k} \sqrt{2\Delta p}$ $\hat{\mathbf{m}} = \left(\frac{3m}{3c} S_{p}\right)^{2} + \left(\frac{3m}{3\Delta p} S_{2p}\right)^{2}$ $\frac{3m}{3c} = \frac{m}{2c} - \frac{3m}{3\Delta p} = \frac{m}{2\Delta p}$ $\hat{\mathbf{m}} = \frac{m}{2c} - \frac{3m}{3\Delta p} = \frac{m}{2\Delta p}$ $\hat{\mathbf{m}} = \frac{m}{2c} \left(\frac{S \Delta p}{2\Delta p}\right)^{2} + \left(\frac{S p}{2c}\right)^{2}\right)^{1/2}$

Operating condition immediately prior to accident

Loop A

 $m = 5.74 \times 10^6$ lb per hr, $\Delta P = 37.495$ psi, temp = 464°F

p = 51.046 lb per cu ft, p = 1047 psi

Loop B

 $m = 5.693 \times 10^6$ lb per hr, p = .37.188 psi, temp = 461° F p = 51.18 lb per cu ft, p = 985 psi

Uncertainty Calculation

The estimated bias error in "k" is 1.5% assuming that it was determined theoretically.

.

$$B = 6.5 \times 10^{1} \left[\left(\frac{.42}{2 \times 42.46} \right)^{2} + \left(\frac{.342}{2 \times 51.1} \right)^{2} \right]^{1/2}$$

where 6.5 x 10^6 is the maximum flowmeter range, 42.46 is the maximum ΔP and 51.1 is the nominal fluid.

B = .6%

$$B_k = 1.5\%$$

 $U_n = [(1.5)^2 + (.6)^2]^{1/2} = 1.62\%$ of range
or
1.06 x 10⁵ lbm per hr

REFERENCES

- R. B. Abernethy, R. P.Benedict, "Measurement Uncertainty: A Standard Methodology," ISA Transactions, Vol. 24, Number 1, 1985.
- R. B. Abernethy, et. al., "Measurement Uncertainty Handbook," AEDC-TR-73-5, Revised 1980.
- 3. Measurement Uncertainty for Fluid Flow in Closed Conduits, ANSI/ASME MFC-2M-1983.

.

INTEROFFICE CORRESPONDENCE

Date: August 26, 1986

To: D. W. Golden

From: J. L. Anderson JLA

Subject: DATA QUALIFICATION - SYSTEM PRESSURE - JA-16-86

Attached is a final copy of the data qualification document for the primary system pressure. This pressure is a composite created from several data sources (reactimeter, printer, and strip chart) and is the best available primary system pressure. The composite system pressure was assigned a qualification classification of QUALIFIED with an uncertainty of \pm 40 psi by the Data Integrity Review Committee (DIRC) during the July 14, 1986 meeting, with the following note added to the data base records. Note: The stated uncertainty is the maximum calculated uncertainty for the composite pressure. Uncertainties for certain time periods are less. Refer to the data qualification document for further information.

jla

Attachment: As Stated

cc: J. M. Broughton R. W. Brower P. J. Grant H. E. Knauts P. Kuan R. D. McCormick Y. Nomura A. Takizawa E. L. Tolman J. L. Anderson File DIRC File Central File

"Providing research and development services to the government"

DATA QUALIFICATION DOCUMENT

August 1986

James L. Anderson

.

PRIMARY SYSTEM PRESSURE DATA QUALIFICATION DOCUMENT

- 1 -

1. INTRODUCTION

One of the primary parameters required for thermal-hydraulic analysis of TMI-2 accident is the pressure of the primary system during the The pressure is required for comparison to the large computer accident. code predictions of the accident, in addition to the need for the pressure in order to obtain the phase properties of the fluid in any analysis effort. Unfortunately, no single data source is available which provides the pressure during the entire accident sequence. As a result, a composite of various data sources is required to obtain the primary system The presented composite primary system pressure has been pressure. reviewed by the Data Integrity Review Committee (DIRC) and assigned a ualification category of QUALIFIED, with a stated uncertainty of ± 40 psi¹. This document will describe the various available data sources and how they were combined to obtain the composite pressure. The composite pressure will be presented and comparisons to the various data source will be made. In addition, an uncertainty analysis of the composite pressure will also be presented.

2. MEASUREMENT DESCRIPTION AND DATA SOURCES
system in Figure 1. Connected to each of these penetrations, through $\frac{1}{2}$ -inch sense lines, are two pressure transmitters mounted in the reactor building basement at an elevation of 285'. One type of pressure transmitter is a Rosemount model 1152GP variable capacitance pressure transmitter (output 4-20 mADC) which was setup for a 1700-2500 psig measurement range, and referred to as the narrow range measurement². The two narrow range transmitters in each loop were identified as RC-3B-PT1 & PT2 and RC-3A-PT1 & PT2. The other transmitter type connected to each sense line was a Foxboro model E11GH bourdon tube/electronic force balance pressure transmitter (output of 10-50 mADC) with a measurement range of 0-2500 psig, and referred to as the wide range measurement. The two wide range transmitters in each loop were identified as RC-3A-PT3 & PT4 and RC-3B-PT3 & PT4.

- 2 -

Output from one of the narrow range pressure transmitters in the B-loop (RC-3B-PT1-R)³ was recorded on the reactimeter at a sample rate f one sample every 3 seconds. A block diagram for this measurement is shown in Figure 2. This data is considered to be the best available pressure data. However, following the reactor trip the primary system pressure quickly dropped below the minimum range for this measurement (by 2.2 minutes). With the exception of certain periods in which the system pressure increased to within the range of this transmitter, other data sources are required for obtaining the primary system pressure.

²Although the narrow range measurement was set-up for a range of 1700-2500 psig, the measurement continued to produce readings slightly below 1600 psig. Therefore, the reactimeter data down to 1600 psig was used in the composite pressure. ³The TMI-2 Accident Evaluation Program uses the basic measurement

identifications originally assigned by GPU. However, a suffix is typically added which identifies the recording device. For example; -R is added for measurements recorded on the Reactimeter; -S is added for measurements recorded on Strip charts; and -P is added for measurements recorded on either the utility or alarm printers.

Output from one of the wide range pressure transmitters installed in the A-loop (RC-3A-PT3) was recorded on the utility printer for two significant time periods. The first of these periods was from -15 min. to +15 min. of the reactor trip, which was recorded on the utility printer as the Memory Trip Review. The second time period started at 570 min. and continued throughout the remainder of the first day of the accident. This data was recorded on the utility printer as operator group trend C, recorded once every 2 minutes. Output from RC-3A-PT3 was also recorded on a strip chart mounted on one of the operators control panels (strip chart This strip chart has been digitalized. However, the resulting # 59). data is considered to be the least accurate data available, and was only used when no other data was available. Adjustment of this data was required to match the initial pressure and event timing in comparison to the reactimeter data. A block diagram of this measurement system is provided in Figure 3.

- 3 -

Knowledge of the thermal-hydraulic conditions in the reactor system, during the first 100 min., also allows the possibility of obtaining the system pressure from the measured hot leg temperature. By 6 min. into the accident, the system had depressurized to the point where a two-phase mixture was exiting the core and flowing through the entire primary system (both steam generators had boiled dry by this time). This observation is supported by the increasing output from the source range neutron detectors. During the period in which a two-phase mixture was flowing through the system, the system pressure had to have been at saturation pressure. The saturation pressure can be obtained from the steam tables using the measured hot leg temperature which was recorded on the reactimeter (RC-4A-TE1-R).

The aforementioned data sources were used to create a best estimate composite of the primary system pressure. The time segments over which each data source were used are listed in Table 1. The composite pressure is shown in Figure 4 for the first 300 min. of the accident. Comparisons

E-58

of the various data sources are provided in Figures 5-14. The system pressure prior to the accident initiation (initial condition) was 14.91 MPa (2148 psig). Data values and uncertainties for the initial times of each phase of the standard problem (0, 100, 174, & 225 min.) are presented in Table 2.

- 4 -

3. UNCERTAINTY ANALYSIS

Estimates of the uncertainties from each data source are summarized in Table 3. Included are uncertainty estimates for each component of the measurement systems. Footnotes are provided for Table 3 detailing the sources of the component uncertainties and assumptions used. The methods used for combining uncertainty components are outlined in _`eferences 2 & 3.

4. REFERENCES

- 1. Rosemount Inc., <u>Model 1152 Alphaline Pressure Transmitters for Nuclear</u> Service, 1976.
- R. D. McCormick, <u>Data Qualification and Uncertainty Analysis</u>, attachment to letter RDMc-4-86, "Final Data Analysis Plan", to J. M. Broughton, dated June 2, 1986.
- Measurement Uncertainty for Fluid Flow in Closed Conduits, ANSI/ASME, MFC-2M-1983.
- 4. Foxboro Company, <u>Installation/Operation/Maintenance</u> for Model El1GH Pressure Transmitter, 20-220, Jan. 1969.
- R. D. McCormick, "Initial Condition Temperatures of Primary Loop Coolant," attachment to letter RDMc-7-86 to D. W. Golden, dated August 19, 1986.

TABLE 1 DATA SOURCES AND TIME FRAMES FOR COMPOSITE PRESSURE

- 6 -

T ime (min	Fr ute	ame s) ^a .	Data Source
-10.	-	2.15	RC-3B-PT1-R, recorded on the Reactimeter
2.4	-	5.65	RC-3A-PT3-P, recorded on the Utility Printer as
			Memory Trip Review
6.0	-	100.	Saturation Pressure from RC-4A-TE1-R recorded on
			the Reactimeter
100.6	-	172.5	RC-3A-PT3-S, recorded on the strip chart
174.65	-	203.6	RC-3B-PT1-R, recorded on the Reactimeter
207.	-	223.5	RC-3A-PT3-S, recorded on the strip chart
225.35	-	233.3	RC-3B-PT1-R, recorded on the Reactimeter
240.0	-	326.6	RC-3A-PT3-S, recorded on the strip chart
336.00	-	463.55	RC-3B-PT1-R, recorded on the Reactimeter
464.	-	568.	RC-3A-PT3-S, recorded on the strip chart
570.3	-	869.6	RC-3A-PT3-P, recorded on the utility printer as
			operator group trend C
870.85	-	932.75	RC-3B-PT1-R, recorded on the Reactimeter
933.55			RC-3A-PT3-P, recorded on the utility printer
934.75	-	950.2	RC-3B-PT1-R, recorded on the Reactimeter
950.75	-	1000.	RC-3A-PT3-P, recorded on the utility printer

a. Timing uncertainties for the different data sources are as follows: Reactimeter = ±0.05 min.; Strip Chart = ± 3 min.; Utility Printer = +0, -0.5 min.

•

TABLE 2

PRIMARY SYSTEM PRESSURE INITIAL CONDITIONS

TIME (min.)	PRESSURE (psig)	DATA SOURCE	
0	2148 ± 11^4	RC-3B-PT1-R	Reactimeter
0	2164 ± 29	RC-3A-PT3-P	Utility Printer
100	935 ± 16	P _{sat} from RC-4A-TE1-R	Reactimeter
174	1235 ± 40^5	RC-3A-PT3-S	Strip Chart
225	1468 ± 40 ⁶	RC-3A-PT3-S	Strip Chart

⁴The standard deviation of the reactimeter pressure data from -10 to 0 min. was 3.3 psi. ⁵The 2B pump restart at 174 minutes resulted in a rapid repressurization. The system was also repressurizing prior to 174 min. The stated value is the strip chart value prior to the rapid repressurization (at 171.8 min). An interpolated value at 174 min. is 1582 psig. Timing uncertainty for the strip chart is estimated to be ± 3 min. ⁶The minimum pressure prior to the rapid repressurization at 223.4 min. is stated. The pressure recorded on the strip chart at 225 ± 3 min. was 1572 psig.

TABLE 3 PRIMARY SYSTEM PRESSURE - UNCERTAINTY ANALYSIS

DATA SOURCE	UNCERTAINTY COMPONENT	UNCERTAINTY % of Range Span	ESTIMATE ^{b.} Absolute (psig)	
REACTIMETER ^C . RC-3B-PT1-R (Range =	Transmitter (Rosemount)d. Accuracy Temperature Sensitivity ⁿ .	± 0.50% ± 1.0%/100°F	± 4.0 ± 4.8	
1700-2500)	Stability Electronics (Tolerance) ^e .	± 0.25% FS	± 6.3	
	[=/(.25% ² +.75% ²)] Recorder ¹ •	± 0.79% ± 0.11%	± 6.3 ± 0.9	
	TOTAL UNCERTAINTY		± 10.9	
UTILITY PRINTER ^h .				
	Transmitter (Foxboro) ¹ .			
RC-JA-PIJ-P	Accuracy Torresture Consistivity	1 0.50%	± 12.5	
(xanye - 0-2500 psig)	Flectronics (Tolerance) ^e .	1.08/03°r + 0.509	I 43.1	
v 2300 pary,	Recorder (Computer)].	± 0.11%	± 2.5	
	TOTAL UNCERTAINTY		± 29.2	
REACTIMETER-SATUR	ATION			
RC-4A-TE1-R	P _{sat} due to RTD uncertainty		± 16	
STRIP CHART #591.				
	Transmitter (Foxboro)			
RC-3A-PT3-S	Accuracy	± 0.50%	± 12.5	
(Range = 0.2500 pairs)	Temperature Sensitivity	1.0%/65°F	± 23.1	
0-2000 BETG)	Strip Chart Records M.	I U.JU%	± 12.5	
	Recorder Setup		A 35	
	Digitalization of Strip Cha	irt	I 40. + 10	
			I IV.	
	TOTAL UNCERTAINTY		± 39.7	

٠

TABLE 3. (continued)

a. Various data sources were used for creation of the composite primary pressure. The most accurate sources of data for each particular time segment were used.

b. The uncertainty estimates given were obtained from various sources, which are listed in the following footnotes. The uncertainty estimates are given for the 95% confidence level, and are all considered to be Bias restimates due to the lack of statistically significant data.

c. The narrow range pressure recorded on the Reactimeter (RC-3B-PT1-R) is considered to be the most accurate data source, and is used as the primary data source while within range.

d. The source of uncertainty estimates for the narrow range pressure transmitter is the Rosemount transmitter manual, Reference 1.

e. The acceptable tolerance limits stated in the instrumentation calibration sheets and the surveillance procedure data sheets are used as the uncertainty estimates for the signal conditioning electronics.

. The uncertainties associated with recording on the reactimeter are assumed to be the same as for recording on the plant computer. No uncertainty information on the reactimeter is available. This includes manuals, drawings, model number, and serial number of the unit installed by B&W during the accident.

g. Individual uncertainty components are combined using the Root-Sum-Square method outlined in References 2 & 3.

h. Wide range pressure (RC-3A-PT3-P) information recorded on the Utility Printer is considered to be the most accurate available data source during periods in which the narrow range pressure transmitter was below the lower bound, and is used whenever available. Available utility printer wide range pressure data is from the Memory Trip Review (± 15 minutes of reactor trip) and the operator group trend C data (starting at 570 minutes).

i. Uncertainty estimates for the wide range transmitter are based on the Foxboro transmitter manual, Reference 4.

j. The uncertainty estimate for the data recorded on the computer (via the utility printer) is based on the individual uncertainty components of the analog-to-digital convertor given in the Bailey 855 Computer manual, section 8.3.

TABLE 3. (continued)

k. The saturation pressure, obtained using the hot leg RTD temperature measurement recorded on the Reactimeter, is considered to be the most accurate data source during the period of pumped two-phase flow in the λ -loop (6-100 minutes). Uncertainty in the RTD temperature measurement of \pm 1.1°F (Reference 5) was used in conjunction with the ASME steam tables to obtain the stated uncertainty estimate.

1. Data obtained from the digitalization of the strip chart recorder is considered to be the least reliable data available, and was the last source of data used.

m. Uncertainty estimates for the strip chart recorder are based on engineering judgement.

n. A 60°F temperature increase in the containment building, near the location where the pressure transmitters were mounted, was used for obtaining the uncertainty estimate due to temperature sensitivity of the pressure transmitter during the first 300 minutes of the accident.

Figure 1. Isometric of the TMI-2 primary system.

Measurement Block Diagram Narrow Range Reactor Coolant Pressure RC-3B-PT1

Fig. 2. Narrow range reactor coolant pressure measurement block diagram

57

Measurement Block Diagram Wide Range Reactor Coolant Pressure

RC-3A-PT3

Reference: Bailey Dwg 8047175E & 8038486D

Fig. 3. Wide range reactor coolant pressure RC-3A-PT3 measurement block diagram

1

N

Fig. 4. Primary system pressure

E-69

.

Fig. 5. Comparison of composite primary pressure and wide range pressure recorded on the utility printer memory trip review

E-70

.

1

명지

TIME(MINUTES)

Fig. 6. Comparison A-loop narrow and wide range pressures recorded on the utility printer memory trip review

2 RC-3A-PT3-P

TIME(MINUTES)

Fig. 7. Comparison of A and B loop wide range pressures recorded on the utility printer memory trip review

E-72

+

Fig. 8. Comparison of A and B loop narrow range pressures recorded on the utility printer memory trip review

Fig. 9. Comparison of A-loop wide range pressure recorded on the strip chart No. 59 and the B-loop narrow range pressure on the reactimeter

E-74

Fig. 10. Comparison of A-loop wide range pressure recorded on the strip chart No. 59 and the B-loop narrow range pressure on the reactimeter

Fig. 11. Comparison of A-loop wide range pressure recorded on the strip chart No. 59 and the B-loop narrow range pressure on the reactimeter

E-76

1

TIME(HOURS)

DATA FROM SC-059

Fig. 12. Comparison of A-loop wide range pressures recorded on strip chart and utility printer with the B-loop narrow range pressure on the reactimeter

E-77

TIME(HOURS)

DATA FROM SC-059

Fig. 13. Comparison of A-loop wide range pressures recorded on strip chart and utility printer with the B-loop narrow range pressure on the reactimeter

DATA FROM SC-059

Fig. 14. Comparison of A-loop wide range pressures recorded on strip chart and utility printer with the B-loop narrow range pressure on the reactimeter

E-79

INTEROFFICE CORRESPONDENCE

Date: April 15, 1987

To: Distribution

From: J. L. Anderson JLA

Subject: DATA QUALIFICATION - REACTOR BUILDING PRESSURE - JA-4-87

The reactor building (containment) pressure was recorded during the accident on two different strip chart recorders. Each recorder was a two-pen Taylor recorder, model 830J, with input from two different Foxboro pressure transmitters. One transmitter on each recorder had a wide range of 0-100 psig, and the other transmitter had a narrow range of -5 - 15psig. The measurement to be qualified is BS-PT-4388-N-S, recorded on recorder SC-056, from the -5 - 15 psig narrow range transmitter, SN 3259652. This measurement was within its measurement range during the accident, with the exception of the pressure spike during the hydrogen burn. The only useful information from the wide range transmitter (0-100 psig) BS-PT-4388-W-S (SN 3259653) is the magnitude of the pressure spike. Therefore this data will only be qualified at that single value. [Note that the only records of instrument calibration and loop setup are from March 1977.] The narrow range pressure measurement on the other strip chart recorder (SC-055) BS-PR-1412-N-S was not recorded prior to the pressure spike due to failure of the pen to properly ink. Comparison between the two recorded narrow range measurements can to performed following the pressure spike. This was done to help in obtaining an estimate of the data uncertainty. The output from the wide range pressure transmitter BS-PT-1412-W-S was also routed to the plant computer, channel 97. However. there is no indication that any data from this measurement was recorded during the accident.

Data uncertainty estimates for the narrow and wide range measurements recorded on SC-056 are provided in Tables 1 and 2. The total uncertainty estimates are \pm 0.32 psig for the narrow range measurement, and \pm 2.15 psig for the wide range estimate. The magnitude of the pressure spike which occurred at the hydrogen burn was 28.7 \pm 2.2 psig, from the wide range pressure measurement, BS-PT-4388-W-S. This compares quite closely to the other recorded wide range pressure, within the digitization uncertainty.

"Providing research and development services to the government"

9istribution April 15, 1987 JA-04-87 Page 2

'I recommend that a composite channel be created from the narrow range data and the single data point for the pressure spike from the wide range channel, with a measurement identification of BS-PT-4388-S, and that this data be entered into the data base as qualified data. The recommended data is show in Figure 1 for the 0-300 min. time span, and in Figure 2 for the 0-1000 min. time span.

`.

jla

Attachment: As Stated

Distribution: R. W. Brower D. W. Golden R. D. McCormick Y. Nomura

cc: J. M. Broughton J. L. Anderson File Central File DIRC File 1

REACTOR BUILDING NARROW RANGE PRESSURE [BS-PR-4388-N-S] UNCERTAINTY ANALYSIS

UNCERTAINTY COMPONENT	UNCERTAINTY % of Range Span	ESTIMATE ¹ Absolute (psig)
Transmitter (Foxboro) ² Accuracy ³	± 0.50 %	± 0.075
Electronics (Tolerance) ⁴	± 2.0 %	± 0.300
Recorder (Strip Chart) Set-up ⁵ Digitization ⁶	± 0.50 % ± 0.33 %	± 0.075 ± 0.050
TOTAL UNCERTAINTY ⁷	± 2.15 %	± 0.32 psig

Uncertainty estimates are based upon individual uncertainties 1 footnoted below.

The transmitter range for this mesasurement is -5 - 15 psig, which is used for the range span to obtain the absolute uncertainty estimates. From the Foxboro transmitter manual.

From the instrument loop test calibration sheet for tolerance in the setup of the electronics of the measurement.

Estimated from comparison of independent measurements recorded on the two strip charts.

Estimated from the recorder line width.

The total uncertainty estimate is obtained by combining the 7 individual uncertainty components using the Root-Sum-Square method.

REACTOR BUILDING WIDE RANGE PRESSURE [BS-PR-4388-W-S] UNCERTAINTY ANALYSIS

UNCERTAINTY COMPONENT	UNCERTAINTY % of Range Span	ESTIMATE ⁸ Absolute (psig)
Transmitter (Foxboro) ⁹ Accuracy ¹⁰	± 0.50 %	± 0.50
Electronics (Tolerance) ¹¹	± 2.0 %	± 2.00
Recorder (Strip Chart) Set-up 12 Digitization 13	± 0.50 % ± 0.33 %	± 0.50 ± 0.33
TOTAL UNCERTAINTY ¹⁴	± 2.15 %	± 2.15 psig

8 Uncertainty estimates are based upon individual uncertainties footnoted below.

The transmitter range for this mesasurement is 0 - 100 psig, which is used for the range span to obtain the absolute uncertainty estimates. From the Foxboro transmitter manual.

11 From the instrument loop test calibration sheet for tolerance in the setup of the electronics of the measurement.

Estimated from comparison of independent measurements recorded on 12 the two strip charts.

Estimated from the recorder line width.

14 The total uncertainty estimate is obtained by combining the

individual uncertainty components using the Root-Sum-Square method.

.

FIG. 1. CONTAINMENT BUILDING PRESSURE

85-PT-4388-S

INTEROFFICE CORRESPONDENCE

Date: March 2, 1987

To: Distribution

From: J. L. Anderson JLA

Subject: DATA QUALIFICATION - TURBINE HEADER PRESSURE - JA-2-87

Ref: J. L. Anderson ltr to D. W. Golden, JA-18-86, Data Qualification -Secondary Pressures, September 11, 1986

I have reviewed the turbine header pressure data recorded on the reactimeter system [SP-10A-PT1-R]. This measurement was located in the 1A steam line (A-loop steam generator), downstream of the main steam isolation valve [MS-V7A] and upstream of the A-loop steam chest (in which the turbine steam stop valves were located). Since there is no indication that the main steam isolation valves in the A-loop were closed during the first day of the accident, there should be good comparison between the turbine header pressure and the main steam pressure measured in the reactor building and recorded on the reactimeter. These two measurements are compared in the attached Figure 1 for the first 300 minutes of the accident. With the exception of the 15-50 min. period there is very good comparison. By 150 min. the secondary pressure had dropped below the lower range of the turbine header pressure. where is remained for the remainder of the first day. Note that the turbine header pressure dropped down to 500 psig, which is 100 psig below the stated minimum range for the measurement. This behavior was also observed for the narrow range primary pressure recorded on the reactimeter. In addition, this measurement exhibited behavior of an abrupt drop in pressure when the 1A RCP was bumped at 930 min., which was also similiar to the behavior of the main steam pressure measurements [SP-6A&B-PT1-R]. No explanation is available for this behavior.

The -10 to 90 min. time period is expanded in Figure 2, in which the turbine header pressure is as much as 20 psi lower than the main steam pressure, a possible indication of steam flow through the steam line (note that the turbine bypass line is upstream of the isolation valve). This is similiar to the difference between these measurements prior to the turbine trip.

Distribution March 2, 1987 JA-02-87 Page 2

My review of this data does not indicate any failure of the measurement during the first 300 min. of the accident. I therefore recommend that this measurement be assigned a data qualification category of QUALIFIED for the first 150 min. of the accident (within the valid measurement range), with an amplitude uncertainty of \pm 8.2 psig and a timing uncertainy of \pm 3 seconds. The amplitude uncertainty value is documented in the attached Table 1. Estimates for uncertainties from the main steam pressure measurements are used since we do not have detailed information on the turbine header pressure measurement. This procedure should provide reasonable uncertainty estimates.

jla

Attachment: As Stated

Distribution R. W. Brower D. W. Golden R. D. McCormick Y. Nomura

cc: J. M. Broughton J. L. Anderson File Central File DIRC File

TURBINE	HEADER	PRESSURE	[SP-IOA-PTI-R]	_	UNCERTAINTI	

ATT VOTS ANTA T VOTS

TABLE 1

UNCERTAINTY COMPONENT	UNCERTAINTY % of Range Span	ESTIMATE ¹ Absolute (psig)
Transmitter (Foxboro) ² Accuracy ³ Temperature Sensitivity ⁴	± 0.50 % ± 1% / 65°F	± 3.0 ± 6.0
Electronics (Tolerance) ⁵	± 0.79 %	± 4.7
Recorder (Reactimeter)	± 0.11 %	± 0.7
TOTAL UNCERTAINTY ⁶	± 1.37 %	± 8.2 psig

¹ Uncertainty estimates are based upon the uncertainty analysis for the secondary pressures presented in the referenced letter.
² The transmitter range for this mesasurement is 600-1200 psig, which is used for the range span to obtain the absolute uncertainty estimates.
³ From the Foxboro transmitter manual.
⁴ A maximum temperature increase at the transmitter of 65°F is assumed based upon the observed reactor building temperture increase.
⁵ From the referenced document for tolerance in the setup of the electronics of the SP-6A-PT1-R measurement.
⁶ The total uncertainty estimate is obtained by combining the individual uncertainty components using the Root-Sum-Square method.

10.0

COMPARISON OF OTSG STEAM AND TURBINE HEADER PRESSURES

TIME(MINUTES)

E-90

INTEROFFICE CORRESPONDENCE

- Date: September 11, 1986
- Ta: D. W. Golden
- From: J. L. Anderson JLA

Subject: DATA QUALIFICATION - SECONDARY PRESSURES - JA-19-86

Attached is a final copy of the data qualification document for the secondary system pressures. The secondary pressures were assigned a qualification classification of QUALIFIED with an uncertainty of \pm 16 psi by the Data Integrity Review Committee (DIRC) during the August 19, 1986 meeting.

jla

Attachment: As Stated

cc: J. M. Broughton R. W. Brower P. J. Grant H. E. Knauts P. Kuan R. D. McCormick Y. Nomura A. Takizawa E. L. Tolman J. L. Anderson File DIRC File

Central File

"Providing research and development services to the government"

STEAM GENERATOR SECONDARY PRESSURES

DATA QUALIFICATION DOCUMENT

J. L. Anderson

September 1986

,

- 1 -

STEAM GENERATOR SECONDARY PRESSURES DATA QUALIFICATION DOCUMENT

1. INTRODUCTION

One of the primary parameters needed for thermal-hydraulic analysis of the TMI-2 accident is the secondary pressures in each of the two once through steam generators (OTSG's). In addition, knowledge of the secondary pressures is required as boundary conditions for the standard problem package. Luckily these pressures were recorded during the accident and are available for use in analysis and as boundary conditions. This report documents the data qualifications and uncertainty analysis of these recorded secondary pressures.

2. MEASUREMENT DESCRIPTION AND DATA SOURCES

Each of the two OTSG's had two steam lines connecting the secondary sides to the turbines in the turbine building. Connected to each of the four steam lines (in the reactor building) was a Foxboro model ElIGM-SAF1 bourdon tube/electronic force balance gage pressure transmitter (output of 10-50 mADC) with a measurement range of 0-1200 psig. The sense lines penetrated the steam lines at an elevation of approximately 331 feet above sea level, upstream of the main steam isolation valves and the turbine bypass valves. The other end of the sense lines were connected to the pressure transmitters, located in the reactor building basement at an elevation of 287'8" (the transmitters were mounted in rack 426, location 30N-48W). The low pressure side of the gage pressure transmitters were open to the reactor building atmosphere, and thus responded to changes in the reactor building pressure. No adjustments were made to the recorded - 2 -

pressures due to the changing reactor building pressure since the maximum reactor building pressure was less than 5 psi (except for the very brief pressure spike due to the hydrogen burn).

There are three basic sources of recorded secondary pressures. The most complete data source is the data recorded on the reactimeter at a sample every three seconds. The output from one of the pressure transmitters in each steam generator was recorded on the reactimeter. This is considered to be the best source of data for the secondary pressures. The output from one of the pressure transmitters in each steam generator (probably the second transmitter) was input to the plant computer. At selected times the transmitter outputs was printed on the utility printer. Data is available from -15 to +15 minutes of the reactor trip (the Memory Trip Review) and once an hour on the hourly logs for both steam generators. Data is also available for the A-loop steam generator on the operator group trend C from 570-1000 minutes at a output rate of once every 2 minutes. Transmitter output from both steam generators was also recorded on strip charts, however, this data is not considered to be as reliable as the other data sources and has not been digitized.

A measurement block diagram for the secondary pressures is shown in Figure 1. Output from each of the pressure transmitters in each steam generator goes through a manual switch before going to the plant computer or the reactimeter. The position of this switch was not recorded. As a result it is unknown which of the two transmitters in each steam generator was recorded.

E-94

- 3 -

3. DATA PRESENTATION

The data recorded on the reactimeter is compared to the data recorded on the utility printer for the A-loop secondary pressure (SP-6A-PT1/PT2) in Figures 2-5. In Figure 2 the memory trip review data is compared to the reactimeter data. The two measurements compare quite well. The data from the two sources is compared in Figure 3 for the first 1000 minutes, with good comparison until the A-loop pump was restarted at 932 minutes. This figure is expanded in Figure 4 for the first 500 minutes, and in Figure 5 for the 500-1000 minute period. Until the A-loop pump (RC-P-1A) was restarted, the maximum difference between the two recordings was about 14.5 psi. Following the restart of RC-P-1A, the two measurements differed by more than 100 psi (the measurement identified as SP-6A-PT1-R decreased to a -50 psi). This indicates that the two recordings were for the two ifferent pressure transmitters. In addition, is appears that the pressure transmitter recorded on the reactimeter failed as a result of the pressure spike in the secondary side, which resulted from the increased heat transfer when the pump was restarted.

The B-loop secondary pressures recorded on the reactimeter and the utility printer are compared in Figures 6 & 7. For the time period prior to the reactor trip there was an approximate 14 psi difference between the two recorded measurements. This could be an indication that two different pressure transmitter outputs were being recorded, or that the front end electronics for the reactimeter caused this difference.

The secondary pressures of the two steam generators at the times given as initial conditions in the international standard problem are tabulated in Table 2.

E-95

4. UNCERTAINTY ANALYSIS

The uncertainties associated with each component of the secondary pressures are summarized in Table 1. Individual uncertainties are combined using the root-sum-square method given in references 1 & 2. The result is an uncertainty in the reactimeter recorded measurements of approximately ±16 psi.

5. DATA QUALIFICATION

The secondary pressure data recorded on the reactimeter system was reviewed by the Data Integrity Review Committee (DIRC) during its August 19, 1986 meeting and assigned a qualification classification of JUALIFIED with an uncertainty of ±16 psi, and a FAILED classification after 932 min.

6. REFERENCES

- R. D. McCormick, <u>Data Qualification and Uncertainty Analysis</u>, attachment to letter RDMc-4-86, "Final Data Analysis Plan", to J. M. Broughton, dated June 2, 1986.
- Measurement Uncertainty for Fluid Flow in Closed Conduits, ANSI/ASME, MFC-2M-1983.
- Foxboro Company, <u>Installation/Operation/Maintenance for Model EllGH</u> <u>Pressure Transmitter</u>, 20-220, Jan. 1969.

TABLE 1 OTSG SECONDARY PRESSURES - UNCERTAINTY ANALYSIS

- 5 -

DATA SOURCE ^{2.}	UNCERTAINTY COMPONENT	UNCERTAINTY % of Range Span	ESTIMATE ^{b.} Absolute (psig)
REACTIMETER ^C . SP-6A-PT1-R	Transmitter (Foxboro)d. Accuracy	± 0.50%	± 6.0
(Range = 0-1200)	Stability	± 0.25% FS	± 3.0
	$[= \sqrt{(.258^2 + .758^2)}]$ Recorder ² .	± 0.79% ± 0.11%	: 9.5 : 1.3
	TOTAL UNCERTAINTY		± 16.1
UTILITY PRINTER ^{h.}	Transmitter (Foxboro)d.		
(Range =	Accuracy Temperature Sensitivity	± 0.50% 1.0%/65°F	± 6.0 ± 11.1
0-1200 psig)	Electronics (Tolerance) ^{e.} Recorder (Computer) ^{1.}	± 0.50% ± 0.11%	± 6.0 ± 1.3
	TOTAL UNCERTAINTY		: 14.0

a. Data sources used for comparison purposes are the reactimeter and plant computer data recorded on the utility printer.

b. The uncertainty estimates given were obtained from various sources, which are listed in the following footnotes. The uncertainty estimates are given for the 95% confidence level, and are all considered to be Bias estimates due to the total lack of any statistically significant data.

c. The secondary pressure recorded on the Reactimeter (SP-3A-PT1-R) is considered to be the most accurate data source, and is used as the primary data source.

d. The source of uncertainty estimates for the pressure transmitter is the Foxboro transmitter manual, Reference 3. TABLE 1. (continued) e. The acceptable tolerance limits stated in the instrumentation calibration sheets and the surveillance procedure data sheets are used as the uncertainty estimates for the signal conditioning electronics.

f. The uncertainties associated with recording on the reactimeter are assumed to be the same as for recording on the plant computer. No uncertainty information on the reactimeter is available. This includes manuals, drawings, model number, and serial number of the unit installed by B&W during the accident.

g. Individual uncertainty components are combined using the Root-Sum-Square method outlined in References 1 & 2.

h. Available utility printer secondary pressure data is from the Memory Trip Review (± 15 minutes of reactor trip) and the operator group trend C data (starting at 570 minutes).

i. The uncertainty estimate for the data recorded on the computer (via the utility printer) is based on the individual uncertainty components of the analog-to-digital convertor given in the Bailey 855 Computer manual, section 8.3.

OTSG SECONDARY INITIAL CONDITIONS FOR STANDARD PROBLEM

Parameter	Time (min.)		A-100	P		B-loop)
Pressure (MPa)	₀ a.	6.38	±0.11	(<i>o</i> =.015)	6.24	:0.11	(<i>σ</i> =.011)
	100	5.96	2		1.27	±	
_	174	2.58	±		1.07	±	
	225	0.49	±		2.62	±	

a. σ is the standard deviation of the initial condition data from -10 to -0.1 minutes.

FIGURE 1 Measurement Block Diagram Steam Generator Steam Pressures SP-6A-PT1/PT2 (SP-6B-PT1/PT2)

E-100

* Items in parentheses are for the B-loop OTSG

Bailey Dwg 8038499D

Reference:

FIG. 2 COMPARISON OF UTILITY PRINTER AND REACTIMETER SECONDARY PRESSURE DATA

E-101

2 SP-6A-PT1-P

,

REACTIMETER SECONDARY PRESSURE DATA

TIME(MINUTES)

FIG. 4 COMPARISON OF UTILITY PRINTER AND REACTIMETER SECONDARY PRESSURE DATA

REACTIMETER SECONDARY PRESSURE DATA

••

(isd) alussang

E-104

SOI-3 -

Pr

sure

(pst)

1 SP-68-PT1-R

REACTIMETER SECONDARY PRESSURE DATA

INTEROFFICE CORRESPONDENCE

Date: February 27, 1987

To: Distribution

From: J. L. Anderson JLA

Subject: DATA QUALIFICATION - RCDT TEMPERATURE AND PRESSURE - JA-J-87

I have reviewed the recorded data from the Reactor Coolant Drain Tank (RCDT) temperature and pressure measurements. The pressure data was recorded on the reactimeter system, and appears to be valid for the first 932 minutes of the accident, at which time the measurement output goes negative (see attached Figure 1). This response indicates failure of the measurement at this time (the mechanism is unknown; however, this is simultaneous with the bumping of the 1A reactor coolant pump prior to its restart). It should be noted that the rupture disc on the RCDT failed just prior to 15 minutes into the accident, severely limiting the usefulness of the pressure data. This response is shown in Figure 2. Failure of the rupture disc should not have effected the quality of the recorded pressure data. Therefore I recommend a data classification of QUALIFIED for the measurement WDL-PT-1202-R, with an uncertainty of \pm 3.9 psi in magnitude and a timing uncertainty of \pm 3 seconds. The uncertainty value is documented in the attached Table 1.

The RCDT temperature [WDL-TE-1200-P] was recorded on the utility printer once every 2 minutes starting at 570 minutes (a computer scan rate of once every 30 seconds was used for this measurement). This data is shown in Figure 3, and an uncertainty analysis is provided in Table 2. Documentation of the exact location of the measurement in the RCDT has not been located. There is no indications that the measurement was performing improperly. Therefore I recommend that this measurement be assigned a measurement classification of QUALIFIED, with an amplitude uncertainty of $\pm 1.7^{\circ}$ F, and a timing uncertainty of $\pm 0/-30$ seconds.

jla

Attachment: As Stated

Distribution: J. M. Broughton R. W. Brower D. W. Golden R. D. McCormick Y. Nomura J. L. Anderson File DIRC File Central File

"Providing research and development services to the government"

Pressure (psig)

ATTACHMENT JA-1-87 Page 1

E-108

t

E-109

Page 2

.

-

Page 3

REACTOR CCOLANT DRAIN TANK PRESSURE [WDL-PT-1202-R] UNCERTAINTY ANALYSIS

UNCERTAINTY COMPONENT	UNCERTAINTY ES % of Range Span	TIMATE ^{a.} Absolute (psig)		
Transmitter ^b .				
Accuracy	+ 0.50%	+ 1.3		
Temperature Sensitivity ^{C.}	₹ 1.0%/65°F	Ŧ 2.5		
Drift d.	+ 0.50%	- 1.3		
Observed Noise	-	- 7.0		
Electronics (Tolerance) ^e .	+ 0.50%	Ŧ 1.3		
Recorder (Reactimeter) [†]	∓ 0.11%	÷ 0.3		
TOTAL UNCERTAINTY9.	<u>+</u> 1.33%	<u>+</u> 3.9 psi		

a. The uncertainty estimates given were obtained from various sources, which are listed in the following footnotes. The uncertainty estimates are given for the 95% confidence level, and ar all considered to be Bias estimates due to the lack of statistically significant data.

b. The RCDT pressure was measured using a Foxboro pressure transmitter (model E11GM-HSAD2, style E) with a measurement range of 0-250 psig. The output from this transmitter was recorded on the Reactimeter once every 3 seconds with a measurement identification of WDL-PT-1202-R. The source of uncertainty estimates for the pressure transmitter is the Foxboro transmitter manual (Installation/Operation/Maintenance for Model E11GH Pressure Transmitter, Jan. 1969).

c. A maximum temperature increase of $65^{\circ}F$ is assumed for the location where the transmitter was mounted.

d. An uncertainty due to drift in the transmitter of 0.5% is assumed based upon engineering judgement.

e. The acceptable tolerance limits stated in the instrumentation calibration sheets and the surveillance procedure data sheets are used as the uncertainty estimates for the signal conditioning electronics.

f. The uncertainties associated with recording on the reactimeter are assumed to be the same as for recording on the plant computer. No uncertainty information on the reactimeter is available.

g. Individual uncertainty components are combined using the Root-Sum-Square method.

rage 5

A CONTRACTOR OF A CONTRACTOR OF

TABLE 2

RCDT TEMPERATURE - [WDL-TE-1200-P] UNCERTAINTY ANALYSIS

ITEM	ERROR	COMMENT
RTD element ¹	.05%	Of span (0-250 ⁰ F)
Calibration ² RTD and Bridge	.15%	Temperature conversion to resistance and mV.
Signal Converter ³	.1%	Resistance span to mV
Converter ⁴ Accuracy Linearity	.15% .15%	
RTD drift ⁵	.45%	Per year
Electronic drift ⁶	1.0 ⁰ F	
Recorder (Computer) ⁷	.1%	
TOTAL UNCERTAINTY ⁸	1.68 ⁰ F	

¹Taken from the Bailey Meter Company Specification sheet.
²Taken from the Bailey Meter Company Specification sheet.
³From TMI instrument calibration sheet. This is a percent of span tolerance. Resistance is input to bridge and mV is output.
⁴Bailey Meter Company product instruction sheet E92-1906 for signal converter.
⁵From Rosemount Engineering Company product data sheets. Specification of < .25+C drift per year for a platinum RTD element.</p>
⁶Estimate is based upon engineering judgement to account for drift in electronic system.
⁷Based upon uncertainty components of the analog-to-digital convertor given in the Bailey 855 Computer manual, section 8.3.
⁸Total uncertainty is obtained using the Root-Sum-Square method for combining the individual uncertainty components.

INTEROFFICE CORRESPONDENCE

Date: March 5, 1987

To: D. W. Golden

From: R. D. McCormick RDW

Subject: QUALIFICATION OF CONTAINMENT AIR TEMPERATURE DATA - RDMc-5-67

The air temperature measurement data for the drain tank region (AH-TE-5011-M) and the letdown cooler region (AH-TE-5012-M) were reviewed. The information base for the review was the Reference 1 and 2 documents. The data were recorded on multipoint recorder AH-Y-MTR-5017 also referred to as Recorder No. 1. The recorder was calibrated in November 1977 and again in March 1982. At this later time a maximum error of 1°F was measured in the recorder. According to the specifications on the RTD, there was a possible error of approximately 1°F in the accuracy of the RTD. The stability of the RTD was 0.2% of maximum temperature or 0.95°F. It was estimated that the maximum temperature in the containment exceeded 1000°F (according to references). The time uncertainty of data was ± 90 seconds and data were printed every 6 minutes. The time constant was estimated to be 41 ± 24 seconds in air. In 1982 there was a resistance reading error equivalent to 10°F in RTDs. This was believed to be due to corrosion and surface contamination after the accident.

It is estimated that the RTDs were working okay during the accident but they could not measure temperatures of the hydrogen burn because of the slow sample rate. I think the data should be qualified for all time except at temperature peaks. After the hydrogen burn I increased the error because of the high exposure temperatures. Table I and II give details of the data qualification and uncertainty analysis.

D. W. Golden March 5, 1987 RDMc-5-87 Page 2

۲

TABLE I

SUMMARY OF DATA QUALIFICATION

Item	<u>Time</u> (Hours)	Category	<u>Uncertainty</u> (± ^O F)
Letdown cooler AH-TE-5011-M	Up to 13:46	Qualified	2.7
	13:52	Trend	
	13:58 and after	Qualified	3.3
RC drain tank AH-TE-5012-M	Up to 04:41	Qualified	2.7
	04:47 and 04:53	Trend	
	04:59 to 13:47	Qualified	2.7
	13:53 and 13:59	Trend	
	14:05 and on	Qualified	3.3

i

E-114

• •

D. W. Golden March 5, 1987 RDMc-5-87 Page 3

TABLE II

UNCERTAINTY ANALYSIS

RTD Air Temperatures

AH-TE-5011-M - Letdown Cooler Temperature AH-TE-5012-M - RC Drain Tank Temperature

Item	(+) Error	Comment
RTD[a] Accuracy	.95 ⁰ F	At 100°C deviation from nominal R vs T cruve
Stability ^[b]	.46 ⁰ F	Before H ₂ burn
	2°F	After H ₂ burn
Recorder[c]	1 ⁰ F	In 1981
Temperature ^[d]	1°F	
Digitizing error[e]	2°F	

•

Before hyrogen burn $\pm 2.7^{\circ}$ F. After hydrogen burn $\pm 3.3^{\circ}$ F. Time uncertainty ± 1.5 minutes.

٠

D. W. Golden March 5, 1987 RDMc-5-87 Page 4

- NOTE: (a) Taken from Rosemount Inc. Product Data Sheet 2178 on the series 78 platinum RTD.
 - (b) Stability listed as 0.2% of exposed temperature hydrogen burn resulted in temperature greater than 1000°F from GEND-INF-030.
 - (c) Recorder error was measured in 1982 (EG&G Report ED-E3-82-017) and previously in 1977.
 - (d) The RTD's used a three wire system which would allow some error due to temperature changes in the facility affecting the resistance of the lead wires. A 140°F change in temperature would yield approximately .1% of span change output.
 - (e) Estimated error of 1% for interpretation and reading. UI students projected the 16 mm image onto some kind of digitizing table.

References

- (1) ED-E3-82-017, June 1982
 "Current Status and Accident Data Presentation of Containment Air Temperature Resistant Temperature Sensors," James W. Mock.
- (2) GEND-INF-030, April 1983
 "Analysis of Air Temperature Measurements from the Three Mile Island Unit 2 Reactor Building," Michael 0. Fryer.

jlm

cc: J. L. Anderson J. M. Broughton

R. W. Brower Y. Nomura R. D. McCormick File Central File DIRC File

.

INTEROFFICE CORRESPONDENCE

Date: June 10, 1987

Te Distribution

From: R. D. McCormick RUM

Subject DIRC RESULTS ON TEMPERATURE MEASUREMENTS - RDMc-1-87

A Data Integrity Review Committee (DIRC) meeting was held on January 27, 1987, to review the subject temperature measurement uncertainty analysis and verify their quality categories. The details of the uncertainty analyses are contained in the attached Tables 2 to 6. Table 1 below summarizes the results of the DIRC meeting. The data were all considered QUALIFIED for the times shown and NOT REVIEWED for all other times.

The pressurizer surge line temperature was estimated to be trend data primarily because it came from a strap-on thermocouple.

Measurement	<u>+ Uncertainty</u>	Time Qualified
RC-4A-TE1-R	1.14 ^o F	All time
RC-4B-TE1-R	1.14 ^o F	All time
SP-4A-TE	2.1°F	Prior to O time
SP-4B-TE	2.1°F	Prior to O time
SP-5A-TE-F	1.71 ⁰ F	Prior to O time
FW-TE-1131-P	1.78 ⁰ F	Prior to O time
RC-5A-TE2-R	1.91 ⁰ F	All time
RC-5B-TE2-R	3.73 ⁰ F	All time
RC-9-TE-P	None	Trend for all time
jlm		

Attachments: As Stated

Distribution J. L. Anderson J. M. Broughton R. W. Brower D. W. Golden H. E. Knauts R. D. McCormick File Central File

RC HOT LEG TEMPERATURES

Uncertainty Analysis RTD Range 520 to 620°F RC4A-TE-1-R and RC-4B-TE1-R

Item	Error	Comment
RTD element ^[a]	. 05%	Span
Calibration ^[b] (RTD and Bridge)	.15%	Temp to resistance and mv
Calibration ^[c]	.1%	Res span to mv
Converter ^[d]	.15% .15%	Accuracy span Linearity span
RTD drift[e]	.45%	Per year
Electronic draft[f]	1.0°F	
Reactimeter ^[g]	.1%	Span
$U_n = [B^2 + S^2]^{1/2} = \pm$	1.137°F	

- a&b These were taken from the Bailey Meter Company Spec found on microfische.
 - c From Instrument Calibration Sheet at TMI. This is a percent of span tolerance. Resistance is input to bridge and mv is readout.

 - e From Rosemount Engineering Company product data sheets. Says <.25°C drift per year in platinum RTD element.
 - f Estimate based on engineering judgment to account for drift in electronic system.
 - g Based on calculation using TMI data on computer system.

STEAM TEMPERATURE

Uncertainty Analysis for RTD Range 100 to 650°F SP-4A-TE-P and SP-4B-TE-P Hourly Log

Item	<u>(±)Error</u>	Comment
RDT element[a]	. 05%	Span of 550 ⁰ F
Calibration[b] (RTD and Bridge)	. 15%	
Calibration[c] (Bridge)	. 1%	Span
Converter ^[d]	.15% .15%	Span Span
RTD drift[e]	.45°F	
Electronic drift[f]	1.0°F	
Computer[g]	.1%	Span
Read out ^[h]	.5°F	
Radiation loss[i]	1.0°F	

 $U_n = 2.22^{\circ}F - .5^{\circ}F = 2.72^{\circ}F$

a-g - Same as Table 2.

- r Read out of hourly log is rounded off to 1⁰F. This error is added to uncertainty directly (no RSS).
- i Estimated radiation loss based on engineering judgment.

٠

FEEDWATER TEMPERATURE

Uncertainty in RDT Range 0 to 500°F SP-5A-TE1-R and FW-TE-1131-P

Item	(±)Error	Comme	nt		
RTD element	.25 ^{0F}				
Calibration (RTD and Bridge)	.15°F				
Calibration (Bridge)	.5°F				
Converter	.75 ⁰ F .75 ⁰ F				
RTD drift	.45°F				
Electronic drift	l°F				
Reactimeter/computer	.5°F				
Hourly log readout	. 5 ⁰ F	Do not	RSS	this	error.

SP-5A-TE1-R on reactimeter $U_n = \pm 1.71^{\circ}F$ FW-TE-1131-P (on hourly log) $U_n = 1.71 + .5 = 2.21^{\circ}F$

A CARAGE

NOTE: The 0.5⁰F is added directly to the uncertainty not RSS.

.

Uncertainty in RC Cold Leg Temperature RC-5A-TE2-R Range 50 to 650°F

ltem	(±) Error	Comment
RTD element	0.3 ⁰ F	Span 600 ⁰ F
Calibration (RTD and Bridge)	0.15 ⁰ F	
Calibration (Bridge)	0.6 ⁰ F	
Converter	1.273°F	
RTD drift	0.45°F	
Electronic drift	1.0°F	
Reactimeter	0.6 ⁰ F	

Uncertainty = \pm 1.91°F

.

٠

Uncertainty in RC Cold Leg Temperatures RC-5B-TE2-R Range 50 to 650°F

Item	<u>(±) Error</u>	Comment
RTD element	0.3 ⁰ F	Span 600 ⁰ F
Calibration (RTD and Bridge)	0.15°F	
Calibration (Bridge)	0.6 ⁰ F	
Converter	1.273 ⁰ F	
RTD drift	0.45°F	
Electronic drift	1.0°F	
Reactimeter	0.6 ⁰ F	
Offset[a]	3.2 ⁰ F	

Uncertainty = \pm 3.73°F

a) The offset was due to the mismatch between RC-5A-TE2-R temperature and the hot leg and saturation temperatures during the first approximate 75 minutes of the accident. This is an anomaly which has not been explained.

INTEROFFICE CORRESPONDENCE

Date: June 10, 1987

To: DIRC File

From: R. D. McCormick

Subject: PRESSURIZER TEMPERATURE AND OTSG TEMPERATURE UNCERTAINTIES -RDMc-11-87 - Revision

This letter gives the uncertainty analyses for the OTSG downcomer and upper downcomer (SP-12A(B)-TE and SP-3A(B)-TE), the pressurizer (RC-2-TE1-P) and the pressurizer surge line (RC-9-TE) temperature measurements. The surge line temperature is measured by a Chromel-Constantan thermocouple while the other three are measured by RTDs in thermal wells. The surge line thermocouple is of the strap-on type and is believed to go directly to the plant computer, not going through a reference junction or signal conditioning.

Analysis of the RC-9-TE measurement indicated that it should have had an uncertainty of less than 10° F if the device were operating properly. It is concluded from comparing the analysis with observed measurement errors that the device was not operating properly.

jlm

Attachments: As Stated

cc: J. L. Anderson R. W. Brower D. W. Golden R. D. McCormick File Central File

"Providing research and development services to the government"

UNCERTAINTY ANALYSIS SP-3A-TE1/2-P DOWNCOMER TEMPERATURE ON PLANT COMPUTER RANGE 0 TO 600°

Item	<u>(±) Error</u>	Comment	
RDT Element ^[a]	0.3°F	Span	
Calibration ^[b] RTD and Bridge	1.0°F	^o F to ohms	
Calibration ^[c]	0.6 ⁰ F	Ohms to mv	
Converter ^[d]	0.9°F 0.9°F	Accuracy Linearity	
RTD Drift ^[e]	0.45 ⁰ F	Per year	
Electronic Drift ^[f]	1.0°F		
Readout and[g] Computer	0.85°F	Span	

.

Uncertainty = $\pm 2.2^{\circ}F$

- a&b These were taken from the Bailey Meter Company Spec found on microfische.
 - c From Instrument Calibration Sheet at TMI. This a percent of span tolerance. Resistance is input to bridge and mv is readout.
 - d Bailey Meter Company Product Instruction E92-1906 for signal converter.
 - e From Rosemount Engineering Company product data sheets. Says $<.25^{\circ}$ C drift per year in platinum RTD element.
 - f Estimate based on engineering judgment to account for drift in electronic system.
 - g Based on calculation using TMI data on computer system and a \pm 0.1°F resolution in print out.

-2-

TABLE 2

UNCERTAINTY ANALYSIS SP-12A(B)-TE-1-P AND SP-12A(B)-TE-2-P OTSG UPPER DOWNCOMER TEMPERATURE RANGE 70 TO 570°F

<u>Item (±) Error</u> <u>Comment</u>

There is no information on this element. It is assumed, therefore, that it is identical to SP-3 (upper downcomer) system.

.

Uncertainty = $\pm 2.2^{\circ}F$

.

UNCERTAINTY ANALYSIS PRESSURIZER SURGE LINE TEMPERATURE RC-9 - TE-P RANGE 0 TO 700°F CHROMEL CONSTANTAN TC

Item	<u>(±) Error</u>	Comment
TC Wire ^[a]	3°F	
Extension Wire ^[a]	3°F	
Plant Computer ^[b]	0.6 ⁰ F	
Signal Conditioning ^[c]	5.0°F	Estimate
Calibration ^[d]	1.0°F	
Installation[e]	6 ⁰ F	
Wire Cold Work ^[f]	3 ⁰ F	Estimate

Uncertainty = $\pm 9.5^{\circ}F$

- a Omega Engineering, Inc. Handbook 1985 edition specifications on wire.
- b This is the accepted value for the plant computer system.
- c This is an estimate based on the fact that no reference junctions are used and signal is sent directly to the computer. There is also error in computer simulation of the mv versus temperature curve.
- d Taken from TMI-2 instrument calibration sheets.
- e This is an estimate based on engineering judgment.
- f Estimated effect of cold working wire during installation.

UNCERTAINTY ANALYSIS PRESSURIZER TEMPERATURE

	RC-2-TE1/2-P	RANGE	0	TO	700 ⁰ F
Item	<u>± (Error)</u>			Cor	ment
RDT element[a]	1.0°F				
Calibration[b] RTD and Bridge	1.0°F				
Calibration[C]	0.7 ⁰ F				
Converter ^[d]	1.5°F				
RTD Drift[e]	0.45 ⁰ F				
Electronic Drift[1	f] 1 ⁰ F				
Computer[9]	0.7°F				

Uncertainty = $\pm 2.5^{\circ}F$

- a&b These were taken from the Bailey Meter Company Spec found on microfische.
 - c From Instrument Calibration Sheet at TMI. This is a percent of span tolerance. Resistance is input to bridge and mv is readout.
 - d Bailey Meter Company Product Instructions E92-1906 for signal converter.
 - e From Rosemount Engineering Company product data sheets. Says <.25°C drift per year in platinum RTD element.
 - f Estimate based on engineering judgment to account for drift in electronic system.
 - g Based on calculation using TMI data on computer system and a $\pm 0.1^{OF}$ resolution in print out.

٠

.

INTEROFFICE CORRESPONDENCE

Date: June 10, 1987

To: DIRC File

From: R. D. McCormick RD W

Subject: DIRC MEETING APRIL 22, 1987 - RDMc-12-87 - Revision

A DIRC meeting was convened with R. D. McCormick, J. L. Anderson in attendance. D. W. Golden reviewed the DIRC recommendations. Items discussed were:

- a. TE-HL-A and TE-HL-B. These data sets had been previously categorized. Letter RDMc-9-87 was submitted as documentation of previous decisions.
- b. SP-2A-TE-(1 to 5)-P and SP-2B-TE-(1 to 5)-P. These OTSG shell temperatures had been reviewed in the last DIRC meeting but further investigation of the method of thermocouple attachment had been requested. Letter RDMc-10-87 reports on this investigation. These measurements are considered qualified with uncertainty of \pm 8.1°F and -30 to 0 seconds.
- c. SP-12A(B)-TE, SP-3A(B)-TE, and RC-2-TE1-P. These measurements have been declared qualified with accordance of letter RDMc-11-87. SP-3A-TE1/2-P and SP-3B-TE1/2-P have uncertainties of \pm 2.2°F and -30 to 0 seconds. SP-12A-TE1-P, SP-12B-TE1-P, SP-12A-TE2-P, and SP-12B-TE2-P have uncertainties of \pm 2.2°F and -30 to 0 seconds. RC-2-TE1/2-P has an uncertainty of \pm 2.5°F and -30 to 0 seconds. RC-9-TE-P is declared Trend data with a qualified time of -30 to 0 sec.
- d. BS-PT-4388-S. This is a composite data set. This data set was declared qualified according to information in letter JA-4-87. The uncertainty of all the data except the pressure spike is \pm 0.32 psig and \pm 2.2 psig at the pressure spike. The time base uncertainty is \pm 1.2 minutes.
- e. All reactimeter data has a time uncertainty of 3 to +3 seconds.
- f. All hourly log data has an uncertainty of \pm 1.0 minutes.
DIRC File June 10, 1987 RDMc-12-87 Page 2

g. RC-15A-TE1-M. These data are in error and the new digitized data set should be substituted. RC-15B-TE2-M should be put onto the system. These are both Trend data.

jlm

- cc: J. L. Anderson
 - R. W. Brower
 - D. W. Golden
 - R. D. McCormick
 - C. L. Olaveson
 - R. D. McCormick File
 - Central File

٠

INTEROFFICE CORRESPONDENCE

Date: June 11, 1987

To: D. W. Golden

From: R. D. McCormick

Subject: TMI-2 CORE THERMAL POWER INITIAL CONDITION - RDMc-17-86 -Revision

The core thermal power of TMI-2 immediately prior to the accident was 2696 \pm 39 MW. The value was obtained from a calculation using the OTSG parameters, estimated system heat losses, and the RCP contribution. The attachment to this letter contains the details of the power calculation and uncertainty analysis.

jlm

Attachment: As Stated

cc: J. L. Anderson

- R. W. Brower
- H. E. Knauts
- P. Kuan
- E. L. Tolman
- Y. Nomura
- R. D. McCormick File
- Central File

"Providing research and development services to the government"

RDMc-17-86 Page 1 of 4

CORE POWER CALCULATION

The calculation of reactor core thermal power is traditionally done using the secondary side parameters rather than the primary. TMI-2 used an operating procedure[1] for calculating core thermal power which contained some contribution from the primary side power. At or near 100% reactor power, however, values calculated using this procedure were virtually identical to those using only the secondary side parameters (within 0.05% in our case). Therefore, only the secondary side calculation will be shown here for simplicity. Energy losses and RCP pump contributions from the TMI-2 operating procedure[1] were used for these calculations.

The equation used to calculate core power was:

$$P = [W_{AF}(H_{AS} - H_{AF}) + W_{BF}(H_{BS} - H_{BF}) + W_{LD}(H_{BC} - H_{MU}) + C] \times 2.93 \times 10^{-7} - PE$$
(1)

where

P = thermal core power (MW)
WAF & WBF = feedwater flowrate (lb/hr)
HAS & HBS = steam enthalpy (Btu/lb)
HAF & HBF = feedwater enthalpy (Btu/lb)
WLD = letdown flowrate (lb/hr)
HBC = loop B cold leg enthalpy (Btu/lb)
HMU = makeup enthalpy (Btu/lb)
C = miscellaneous losses and credits
PE = RC pump power input.

CORE POWER UNCERTAINTY

The basic calculation of core thermal power after combining the two loop parameters is $p = \dot{m} \Delta h + c$ where c combines the system losses and gains. Since the two main feedwater loops are nearly equal in power extracted from the system, virtually no error is introduced by calculating uncertainty using this abbreviated equation. The uncertainty in percent is calculated by the root-sum-squared technique.

Parameter	Error (%)	Comment
Total feedwater mass flowrate	1.31	From OTSG analysis
Feedwater enthalpy	0.48	
Steam enthalpy	0.2	
Energy gain or loss	0.38	Estimate based on a 50% uncertainty in "C" value

Uncertainty = 1.46%

Details of the calculation are shown in the appendix. The uncertainty in the OTSG feedwater mass flowrate was taken from the OTSG uncertainty analysis. The uncertainty in enthalpies were calculated from the steam table values taken at the initial operating conditions and using the uncertainties established for the temperatures and pressures. The uncertainty in the "C" was estimated by assuming there was a 50% uncertainty. The "C" value contained all the gains and losses for the system including the letdown flow loss and the gain from the RC pumps.

REFERENCES

- 3-

٠

1. Three Mile Island Nuclear Station Unit No. 2 Operating Procedure 2103-1.10, Revision 3, April 5, 1978, Heat Balance Calculations.

•

•

APPENDIX

This appendix gives initial condition parameters used to calculate the core thermal power.

Table 1 lists the initial condition values used in the core power calculation. It also indicates through notes where the data or assumptions came from.

TABLE 1

Parameter	Symbol	Value	<u>Origin</u>	
Feedwater, Flowrate		-		
Loop A	WAF	5.74 x 10 ⁶ lb/hr	1	
Loop B	WBF	5.68 x 10 ⁶ 1b/hr	1	
Enthalpy Steam				
Loop A	HAS	1253.6 Btu/lb	2	
Loop B	HBS	1255.6 Btu/lb	2	
Enthalpy Feedwater				
Loop A	HAF	446 Btu/lb	3	
Loop B	HBF	442.87 Btu/lb	4	
Letdown Flowrate	W _{LD}	3.25 x 10⁴ lb/h r	5	
Enthalpy, Cold Leg	н _{вс}	556.19 Btu/lb	6	
Enthalpy, Makeup	H _{MU}	93.58 Btu/lb	7	
Misc Credit & Losses	C	1.14 x 10 ⁶ Btu/hr	7	
RC Pump Power	PE	16 MW	7	

NOTE:

- 1. Flowmeter SP-8A-FT and SP-8B-FT recorded on the reactimeter.
- 2. Steam tables using pressure SP-6A-PT and SP-6B-PT from the reactimeter and temperature from computer hourly log.
- 3. Steam tables using pressure from hourly log and temperature from SP-5A-TE1 recorded on the reactimeter.
- 4. Steam tables using pressure from computer hourly log and Loop B temperature $(\frac{SP-5B-TE}{FW-TE})$ from the hourly log.
- 5. Calculated by subtracting leakage from the makeup flowrate. Makeup flowrate was 70 gpm and leakage was estimated at 5 gpm. A multiplier of 500 was used to convert gpm to lb/hr taken from the reference one operating procedure.
- 6. Steam table using cold leg B temperatures (RC-5B-TE2) and pressure (RC-3B-PT) both from reactimeter.
- 7. Values taken from operating procedure of Reference 1.

INTEROFFICE CORRESPONDENCE

Date: June 10, 1987

To: DIRC File

From: R. D. McCormick

Subject: QUALIFICATION OF PRIMARY COOLANT TEMPERATURES ON THE HOURLY LOG -RDMc-7-87 - Revision

The hourly log contains four cold leg temperatures and two hot leg temperatures all of which are narrow band data. I have checked these six temperatures against the reactimeter and found good agreement. An uncertainty analysis was then performed using the previous analysis for reactimeter data as a basis. The analyses are generic in that all the cold leg temperatures on the hourly log have the same uncertainty, and the two hot leg temperatures have the same uncertainties. The analyses are contained on the following two tables.

jlm

Attachment: As Stated

cc: J. L. Anderson R. W. Brower D. W. Golden R. D. McCormick File Central File

"Providing research and development services to the government"

ATTACHMENT June 10, 1987 RDMc-7-87

TABLE I

RC HOT LEG TEMPERATURES

Uncertainty Analysis RTD Range 520 to 620°F RC4A-TE-1-P and RC-4B-TE1-P

Item	<u>(±)Error</u>	Comment
RTD element ^[a]	.05%	Span
Calibration[b] (RTD and Bridge)	.15%	Temp to resistance and mv
Calibration ^[c]	. 1%	Res span to mv
Converter ^[d]	.15% .15%	Accuracy span Linearity span
RTD drift[e]	.45%	Per year
Electronic draft ^[f]	1.0 ⁰ F	
Print out ^[g]	.5°F	

 $U_n = 1.13 + .5 = \pm 1.63^{\circ}F$

- a&b These were taken from the Bailey Meter Company Spec found on microfische.
 - c From Instrument Calibration Sheet at TMI. This is a percent of span tolerance. Resistance is input to bridge and mv is readout.

 - e From Rosemount Engineering Company product data sheets. Says <.25°C drift per year in platinum RTD element.
 - f Estimate based on engineering judgment to account for drift in electronic system.
 - g Hourly log print out contains only integer numbers.

ATTACHMENT June 10, 1987 RDMc-7-87 Page 2

TABLE II

Uncertainty in RC Cold Leg Temperature RC-5B-TE1-PRC-5A-TE1-P Range 50 to 650°F

Item	(±) Error	Comment
RTD element	0.3 ⁰ F	
Calibration (RTD and Bridge)	0.15 ⁰ F	
Calibration (Bridge)	0.6°F	
Converter	1.273 ⁰ F	
RTD drift	0.45 ⁰ F	
Electronic drift	1.0°F	
Print out	0.5 ⁰ F	Hourly log

Uncertainty = $1.82 + .5 = \pm 2.32^{\circ}F$

.

INTEROFFICE CORRESPONDENCE

Date: April 7, 1987

To: DIRC File

From: R. D. McCormick @Dm

Subject: OTSG SHELL TEMPERATURE UNCERTAINTY - RDMc-19-87

The OTSG shell temperature measurement has been analyzed to determine its uncertainty. The transducers were Chromel-Constantan sheathed thermocuoples which were welded to metal tabs which were in turn welded to the OTSG shell outer surface. Since the OTSG is insulated there should be only a small measurment error due to radiation and conduction losses. The electrical signal went directly to the plant computer, not going to a reference junction or to a signal conditioner.

jlm

Attachment: Table on Uncertainty Analysis

cc: J. L. Anderson R. W. Brower D. W. Golden R. D. McCormick File Central File

UNCERTAINTY ANALYSIS

SP-2A-TE1 TO TE5 SP-2B-TE1 TO TE5 Range 70 TO 600°F OTSG Shell Temperature Chromel-Constantan Thermocoupie

Item	(±) Error	Comment
TC Wire[a]	3°F	
Extension Wire[a]	3°F	
Plant Computer	0.6 ⁰ F	Accepted value
Signal Conditioning[b]	5°F	Estimate
Calibration[c]	3°F	
Installation	2°F	Estimate
Wire Cold Work[d]	3 0 F	

 $U_n = \pm 8.1^{\circ}F$

- [a] Omega Engineering, Inc. Handbook, 1985 Edition and TMI-2 instrument calibration sheets.
- [b] This is an estimate. The extension wire goes to the computer where all signal conditoning is done. Errors could be due to lack of a reference junction and to simulation of mv versus temperature curve.

[c] From TMI-2 Instrument Calibration Sheets tolerance of error.

[d] This is an engineering estimate of errors possible due to cold working of the TC and extension wire during installation.

INTEROFFICE CORRESPONDENCE

Date: June 10, 1987

To: DIRC File

From: R. D. McCormick

Subject: HOT LEG TEMPERATURES TO 1000 MINUTES - RDMc-9-87 - Revision

The hot leg temperature data files TE-HL-A and TE-HL-B are composites which are made up from reactimeter and stripchart data. The reactimeter channels had a temperature range from 520° F to 620° F. During the time that the hot leg temperatures exceeded these limits, temperature data were taken from stripchart MP-010 (YM-TR-1922). The stripchart data files are RC-15A-TE1-M (pin 6) and RC-15B-TE1-M (pin 5). The attached Tables 1 and 2 list the times and corresponding data sources for the two composite data files. The quality categories of the hot leg reactimeter and stripchart data have been determined and reported in letter RDMc-7-86; i.e., the reactimeter data are "qualified" and the stripchart data "trend". The stripchart data as recorded was adjusted for errors found in amplitude and time. Table 3 gives details of the adjustments made to the stripchart data 300 minutes.

A new file has been made up of MP-010 pin 8 data. All data from MP-010 is "trend".

jlm

Attachments: As Stated

cc: J. L. Anderson R. W. Brower D. W. Golden Y. Nomura R. D. McCormick File Central File

"Providing research and development services to the government"

COMPOSITE A-LOOP HOT LEG TEMPERATURE

TE-HL-A

Time (min)

<u>(min)</u>	Data Source
-15.0 to 130.50	RC-4A-TE1-R
132.6 to 135.1	RC-15A-TE1-M
135.75 to 141.85	RC-4A-TE1-R
142.3 to 624.5	RC-15A-TE1-M
626.20 to 635.55	RC-4A-TE1-R
639.40 to 806.30	RC-4A-TE1-R
807.6	RC-15A-TE1-M
807.05 to 932.60	RC-4A-TE1-R
935.3 to 950	RC-15A-TE1-M

٠

-2-.

COMPOSITE B-LOOP HOT LEG TEMPERATURE

TE-HL-B

.

Time <u>(min)</u>	<u>Data Source</u>
-15.0 to 121.4	RC-4B-TE1-R
123.15 to 149.2	RC-4B-TE1-R
149.5 to 949.9	RC-15B-TE1-M
950.25	RC-4B-TE1-R
952 to 1000	RC-15B-TE1-M

.

CORRECTIONS MADE TO STRIPCHART DATA

Data Source	Amplitude Adjustment	Time Base <u>Adjustment</u>		
RC-15A-TE1-M	-11.0°F	x 0.9642		
RC-15B-TE1-M	+7 ⁰ F	x 0.9642		
RC+1 5B- TEC-M	-15 ⁰ F	x 0.9642		

INTEROFFICE CORRESPONDENCE

Date: July 18, 1986

To: Distribution

From: R. D. McCormick RDM,

Subject: REVIEW OF DATA FOR STANDARD PROBLEM - RDMc-9-86

A Data Integrity Review Committee meeting is being held at 8:00 a.m. on Thursday, July 24 in Room 122, TSA. This meeting is a continuation of the one on July 16 where the agenda was not completed.

jlm

Distribution

- J. L. Anderson R. W. Brower
- L. D. Goodrich
- H. E. Knauts
- R. D. McCormick
- Y. Nomura
- R. D. McCormick File Central File

"Providing research and development services to the government"

INTEROFFICE CORRESPONDENCE

Date: August 28, 1986

To: Distribution

From: D. W. Golden

Subject: PRESSURIZER SPRAY VALVE OPERATION - DWG-5-86

The reactimeter and other data for the pressurizer spray valve operation times has been reviewed. Prior to the turbine trip the spray valve was in manual control as part of the effort to control boron concentration. After the turbine trip the spray valve was placed in automatic control (approximately .13 minutes). At 0.2 minutes ± 0.05 minutes the reactimeter data indicates that the spray valve was ordered to close. Figure 1 shows the reactimeter actuation indication for the spray valve and primary system pressure calibrated 0.05 minutes). At 0.2 minutes primary pressure has decreased to the spray valve close set point of 2155 psig. Therefore, it is concluded that at 0.2 minutes the reactimeter correctly indicated the actuation signal sent to the spray valve.

Between 0.6 and 11 minutes the reactimeter indicates cycling of the spray valve actuation signal, Figure 2. The primary system pressure, Figure 3, does not suggest that the spray valve would actuate during this time period. Review of the Sequence of Events (SOE) data base does not indicate the operators placed the spray valve in manual control and cycled it. A comparison of the turbine trip, reactor trip and spray valve actuation signals as recorded by the reactimeter are shown in Figure 4. This figure shows a coincidence of the use to 10 volts at 0.6 minutes and the drop at 0.8 minutes. This trend continues throughout the first 11 minutes and this behavior disappears after 11 minutes. It is likely that another contact closer signal which was indeed cycling during the first 11 minutes was crosstalking with these channels. The most likely candidates for this are MS-25A and MS-25B, air operated control valves. However, the data to verify this is not in hand. The reactimeter patch panel log does not provide any information on/off signals and the only data we have for on/off signals during the accident are for the above three measurements.

Although there is uncertainty, it is within engineering judgment to conclude that there were no actuation signals sent to the spray valve from 0.6 to 11 minutes.

"Providing research and development services to the government"

Distribution August 28, 1986 DWG-5-86 Page 2

At 174 minutes the SOE indicates that the operators took manual control of the spray valve and opened it to stem the rapid primary system pressure rise. The reactimeter data at 175 minutes verifies the actuation signal. The review of the SOE and reactimeter data (Figure 5) indicates the operators did attempt to operate the spray in the manual mode at various time to 1000 minutes.

A summary of the actuation signal times is provided in Table 1. The basic uncertainty in these data is the sampling rate of 0.05 minutes. After 0.2 minutes there is an additional uncertainty associated with decimating the file to an effective sample rate of 0.4 minutes to read the file. Therefore, between 0 and 0.2 minutes the total uncertainty is ± 0.5 minutes. After 0.2 minutes the total uncertainty is ± 1.5 minutes. After 0.2 minutes the total uncertainty is ± 0.5 minutes.

jlm

Attachments: As Stated

Distribution

- J. L. Anderson
- R. W. Brower
- L. D. Goodrich
- H. E. Knauts
- R. D. McCormick
- Y. Nomura
- A. Takizawa

cc: J. M. Broughton D. W. Golden Central File

~ ..-

SPRAY VALVE OPERATION TIMES

Time (min)	Position
0.0	OPEN
0.20	CLOSED
175.0	OPENED
193.4	CLOSED
225.2	OPENED
261.4	CLOSED
478.2	OPENED
547.0	CLOSED
604.6	OPENED
725.4	CLOSED
1110.2	OPENED
1111.0	CLOSED
1131.0	OPENED
1132.6	CLOSED
1152.6	OPENED
1153.4	CLOSED
1195.8	OPENED
1196.6	CLOSED

.

9

Contraction of the second

Т

Figure 1.

E-148

54

 $\tilde{(}$

÷

Time (m)

Figure 2.

•

E-149

٠

12

.

PRESSURE-PRIMARY (p l s d) Pressure Fring and i.

E-150

<u>ы</u>

E-151

.

Pressure (psig)

r^{i m} .

1

;

••

2.1

\$

INTEROFFICE CORRESPONDENCE

Date: September 5, 1986

To: Distribution

From: D. W. Golden

Subject: PORV/PROV BLOCK VALVE OPERATION TIMES FINAL QUALIFICATION DOCUMENT - DWG-7/86

Attached is the final qualification document for the operation times of the PORV/PORV block valve. Based on the DIRC meeting of August 20, 1986, these data are considered qualified to the level of uncertainty indicated.

jlm

Attachment: As Stated

Distribution

- J. L. Anderson
- R. W. Brower
- 🍞 L. D. Goodrich
 - H. E. Knauts
 - R. D. McCormick
 - Y. Nomura
 - A. Takizawa

cc: J. M. Broughton D. W. Golden Central File

"Providing research and development services to the government"

 $\overline{\mathbb{Z}}$

ATTACHMENT September 5, 1986 DWG-7-86 Page 1 of 4

OPERATION OF THE PORV AND PORV BLOCK VALVE

1 PORV OPENING TIME

The time at which the PORV first opened is indicated by the primary pressure. between the time of turbine trip and scram there are are only two data samples on the reactimeter (0.05 and 0.10 minutes). at 0.05 minutes the slope of the increasing primary pressure decreases, Figure 1. This can be taken as the point at which the PORV opened. At this time the primary pressure is measured to be 37.5 psi above the PORV nominal set point (2255 psig). Thus it is quite possible that the PORV opened earlier than .05 minutes. However, from the data one cannot infer an opening time to a scale finer than the reactimeter sampling rate (0.05 minutes). Thus the uncertainty in the opening time is ± 0.05 minutes.

2 Block valve operating times

The first closure of the PORV block valve is generally taken to have occurred at 139 minutes. Evidence of closure is not indicated by either the primary or secondary systems thermal hydraulic data. The indications of block valve closure is the reactor building pressure. Figure 2 shows the reactor coolant drain tank pressure (WDL-PT-1202-R) from the reactimeter and the digitized reactor building pressure (BS-PR-4388-N-S). Reactor building pressure has been pinned to the to the drain tank rupture disk failure. The stated block valve closure time of 139 minutes is supported by the sharp drop in reactor building pressure between 138.2 and 139.7 minutes. The sample rate for digitizing the reactor building pressure was 1.5 minutes. therefore the uncertainty in timing is taken to be ± 1.5 minutes.

Operation of the PORV block value for the remainder of the transient can be taken from EGG-TMI-7100. These times, through 318 minutes are given in Table 1. Although these times are based on reactimeter data there is an additional uncertainty associated with round off in the table. The round off uncertainty is ± 0.5 minutes for those cases cases reported to the nearest minute. The total uncertainty for these cases based on rss is ± 0.5 minutes.

2

Table 1. PORV block valve operation

time (min)	<u>Operation</u>
139 <u>+</u> 0.5	closed
191.6 <u>+</u> 0.05	opened
194.8 <u>+</u> 0.05	closed
197.9 <u>+</u> 0.05	opened
1 98.4 <u>+</u> 0.05	closed
$\begin{array}{rrrr} 220 & \pm 0.5 \\ 260 & \pm 0.5 \end{array}$	opened closed
276 <u>+0.5</u>	opened
318 <u>+</u> 0.5	closed

1 PRIPRESS SHIFT

9

Figure 1. Primary system pressure shifted 0.05 seconds.

E-156.

Ŋ

)

Page 3

5 00 2

Figure 2. PORV block valve closure inferred from reactor building pressure.

E-157

6/5

TABLE E-1

TMI-2 MEASUREMENTS DESCRIPTION LIST

MEASUREMENT IDENTIFICATION	MEASUREMENT DESCRIPTION	REACTOR SUB-SYSTEM	QUALIFICATION CATEGORY	MEASUREMENT RANGE	MEASUREMENT
AFW-SG-A	Auxiliary Feedwater Secondary Injection Rate. Based upon secondary mass inventory -Steam	Steam Generator A	EST TREND	0 - 135 lbm/s	
AFW-SG-B	Generator A Auxiliary Feedwater Secondary Injection Rate. Based upon secondary mass inventory -Steam	Steam Generator B	EST TREND	0 - 135 lbm/s	
AH-TE-5011-M AH-TE-5012-M BS-PR-4388-N-S BS-PR-4388-W-S	Generator B Ambient Temperature, Letdown Cooler Area Ambient Temperature, Drain Tank Area Reactor Building Pressure - Narrow Range Reactor Building Pressure - Wide Range	Reactor Building Reactor Building Reactor Building Reactor Building	QUAL/TREND QUAL/TREND QUALIFIED QUALIFIED QUALIFIED	0 - 200 F 0 - 200 F -5 - 10 psig 0 - 100 psig -5 - 100 psig	2.7 or 3.3 F 2.7 or 3.3 F 0.32 psig 2.15 psig .32&2.15psig
BS-PT-4388-S DC-R-3399-M DC-R-3400-M FW-TE-1131-P FW-TE-1134-P	Reactor Building Composite Air Pressure Decay Heat Closed A Loop Radiation Monitor Decay Heat Closed B Loop Radiation Monitor Feedwater Heater B Outlet Temperature Feedwater Heater A Dutlet Temperature	Reactor Building Decay Heat Decay Heat Feedwater B Feedwater A	TREND TREND QUALIFIED QUALIFIED	10 - 10E+6 CPM 10 - 10E+6 CPM 0 - 800 F 0 - 800 F	2.2 deg F 2.2 deg F
HP-R-207-M	Intermediate Cooling Pump Area Radiation Monitor - in the Auxiliary Building Station Vent Radiation Monitor - Gas	Aux Building Aux Building	TREND	0.1 - 10E+4 mR/Hr 10 - 10E+6 CPM	
HP-R-222-G-M	Auxiliary Building Purge Air Exhaust Radiation	Aux Building	TREND	10 - 10E+6 CPM	
HP-R-222-1-M	Auxiliary Building Purge Air Exhaust Radiation	Aux Building	TREND	10 - 10E+6 CPM	•
HP-R-222-P-M	Auxiliary Building Purge Air Exhaust Radiation	Aux Building	TREND	10 - 10E+6 CPM	
HP-R-225-G-M	Reactor Building Purge Air Exhaust, Duct A,	Reactor Building	TREND	10 - 10E+6 CPM	
HP-R-225-I-M	Reactor Building Purge Air Exhaust, Duct A,	Reactor Building	TREND	10 - 10E+6 CPM	
HPR-225-P-M	Reactor Building Purge Air Exhaust, Duct A,	Reactor Building	TREND	10 - 10E+6 CPM	
HP-R-226-G-M	Radiation Monitor - Particulate Reactor Building Purge Air Exhaust, Duct B,	Reactor Building	TREND	10 - 10E+6 CPM	
HP-R-226-I-M	Radiation Monitor - Gas Reactor Building Purge Air Exhaust, Duct B,	Reactor Building	TREND	10 - 10E+6 CPM	
HP-R-226-P-M	Radiation Monitor - lodine Reactor Building Purge Air Exhaust, Duct B, Reactor Manitor - Particulate	Reactor Building	TREND	10 - 10E+6 CPM	
HP-R-228-6-M	Audiation Monitor - Particulate Auxiliary Building Purge Air Exhaust Radiation	Aux Building	TREND	10 - 10E+6 CPM	
HP-R-228-1-M	Auxiliary Building Purge Air Exhaust Radiation	Aux Building	TREND	10 - 10E+6 CPM	
HP-R-228-P-M	Auxiliary Building Purge Air Exhaust Radiation Monitor Downstream of Filter - Particulate	Aux Building	TREND	10 - 10E+6 CPM	
HP-R-229-G-M HP-R-3236-M	Hydrogen Purge Radiation Monitor - Gas Reactor Building Purge Unit Area Radiation Monitor	Reactor Building Reactor Building	TREND TREND	10 - 10E+6 CPM 0.1 - 10E+4 mR/Hr	
HP-R-3238-M	Auxiliary Building Exhaust Unit Area Radiation	Aux Building	TREND	0.1 - 10E+4 mR/Hr	
HP-R-3240-M	Fuel Handling Exhaust Unit Area Radiation Monitor	Fuel Handling Building	TREND	0.1 - 10E+4 mR/Hr	

•

THI 2 MEASUREMENTS DESCRIPTION LIST

MEASUREMENT IDENTIFICATION	MEASLINE NENT DE SCHIPTION	HEACTUH SUH SYSTEM	DUAL IF ICHTION CHIEGORY	ME ALA ANE ME HI HANNAE	MERGURE MERT LINE E FETALNEY
HP1 MUP1	HP1/Makeup Estimate Based on Expected Results,	Makump/Lutdown	EST TREND	0 140 LUA/S	
1C-R-1 091-M	The a mass balance analysis of the Frimery System Intermediate Coolant Letdown, Cooler 9 Radiation Monitor	ML	THEND	10 10t.+6 CPM	
IC-R-1042 M	Intermediate Coolant Letdown, Cooler A Hadiation	RL.	THEND	10 - 10L+6 CPM	
1C-R-1893-M	Intermediate Coolant Letdown, Inlet Radiation Monitor	RC	TREND	10 - 10e+6 UPM	
LETDOWN FLOW	Letdown Cooler Volumetric Flowrate	Hakeup/Letdown	QUAL IFIED	8 - 45 10m/s	24.6% Read.
HS-TE-183-H	Steam Generator B2 Outlet Temperature	Steam Gynerator B	THEND	0 - 400 F	
HS-TE-189-H	Stean Generator A2 Outlet Leaperature	Steen Guiter ALOF A	THEND	6 - 400 F	
MU R-728H-M	Primary Coolant Letdown HL Radiation Monitor	Mahmuu/intdom	TREND	10 - 10E+6 CPM	
HLJ-R-728L -H	Primary Coplant Letdown (1) Radiation Monitor	Makmup / Let (ine)	TREND	10 - 10E+6 (PM	
MU-TE-739-M	Letdown Cooler 14 Outlet Tennerature	Hekmin /Let down		A = AAA F	187 Reading
MU-TE-748-M	Letdown Copler 18 (bitlet Temperature	Makeup /Let down		A - 494 F	107 Headlog
NI ND 1-P	Source Bapes Bover Level	BU		A I . INCAL CPG	
NI-ND-1-S	Source Bance Rever Level			9 1 - 104 AA CPS	
N1-N0-2-0	Source Hange Foren Level			0.1 = 100 + 0 - 0 = 0	
N1 ND-3-5	Intermediate Range Power Level	RV	TREND	10E-11 - 10E-3	
NI-ND-4-5	Intermediate Range Power Level	RV	TREND	101+11 - 10E+3	
D PCP1A	Primary Coolant Pump 1A (Start/Stop Times), Binary Function	RC-A	TREND	OFF/ON	
PCP10	Primary_Coolant Pump 18 (Start/Stop Times), Binary Function	RC - B	TREND	DFF/DN	
PUP2A	Primary Coolant Pump 2A (Start/Stop Times), Binary Function	RC - A	TREND	OFFZ ON	
PCP28	Primary Coolant Pump 28 (Start/Stop limes), Binary Function	RC - 8	THEND	UFF/ON	
PORV FLOW RATE	Discharge Flow Rate Through the Pressurizer PDRV - Calculated Parameter	Pressur i zer	QUALIFIED	0 - 240 100/s	20% Reading
PRESSPRIMARY PRESSURE UNC	Reactor Coolant Composite Pressure Primary System Pressure Uncertainty, Discontinuous Function	RC RC	QUAL IF IED	9 - 2598 paig	48 psi (MAX
AC-1-LT1-L-R	Pressurizer Level	Pressurizer	QUAL IF LED	9 - 400 in/H2D	24 in
RC-14A-FT-CALC RC-14A-FT-UNC-	Calculated Loop A Mans Flow Rate Lower Uncertainty of Function RC-14A-FT-CALC	RC-A	QUAL IF IED	0 - 90 MPPH	see Unc. ch
L RC-14A-FT-UNC- U	Upper Uncertainty of Function RC-14A-FT-CALC				
RC-148-FT-CALC RC-148-FT-UNC-	Calculated Loop B Mass Flow Rate Lower Uncertainty of Function RC-148-FT-CALC	RC-B	QUAL IF IED	8 - 98 MPPH	see Unc. ch
RC-148-FT-UNC-	Upper Uncertainty of Function RC-148-FT-CALC				
RC-15A-TE1-M	Hot Leg Temperature - Loop A i Mide Range (Elev. 355'2")	RC-A	TREND	8 - 898 F	
RC-15A-TE3-M	Cold Leg Temperature - Pump 2A Inlet : Wide Range (Elev. 318'2")	RC-A	THEND	0 - 800 F	

TABLE E-1

and the second

.

5

TMI-2 MEASUREMENTS DESCRIPTION LIST

MEASUREMENT IDENTIFICATION	MEASUREMENT DESCRIPTION	REACTOR SUB-SYSTEM	QUALIFICATION CATEGORY	MEASUREMENT RANGE	MEASUREMENT UNCERTAINTY
RC-150-121-M	Hot Leg Temperature - Loop B : Wide Range	RC-B	TREND	0 - 800 F	
RC-158-162-M	Cold Leg Temperature - Pump 18 Intet : Wide Hange		TREND	0 - 900 F	
RC-100-120-F	(Elev. 310'2")	RL-B	TREND	0 - 800 F	
RC-2-TE1/2-P	Pressurizer Temperature	Pressurizer	QUALIFIED	0 - 700 F	2.5 deg F
RC-3A-PT3-P	Reactor Coolant Pressure - Loop A : Wide Range	RC-A	QUALIFIED	0 - 2500 psig	29 psi
RL-JA-PIJ-S	Reactor Coolant Pressure - Loop A : Wide Range	RC-A	QUALIFIED	0 - 2500 psig	39.7 psi
KC-28-611-K	Reactor Coolant Pressure - Loop B : Narrow Range	RC-8	QUALIFIED	1700 - 2500 Asio	10,9 psi
RC-4A-TE1-R	Hot Leg Temperature - Loop A : Narrow Range (Elev. 352'8")	RC-A	QUALIFIED	520 - 620 F	1.14 deg F
RC-4A-TE1/4-P	Hot Leg Temperature - Loop A : Narrow Range	RC-A	QUALIFIED	520 - 620 F	1.63 deg F
RC-48-TE1-R	Hot Leg Temperature - Loop B : Narrow Range (Elev. 352'8")	RC-B	QUALIFIED	520 - 620 F	1.14 deg F
RC-48-TE1/4-P	Hot Leg Temperature - Loop B : Narrow Range	RC-B	QUAL IFIED	520 - 620 F	1.63 deo F
RC-5A-TE1-P	Cold Leg Temperature - Pump 1A Inlet : Narrow Range (Elev. 310'2")	RC-A	QUALIFIED	520 - 620 F	2.32 deg F
RC-5A-TE2-R	Cold Leg Temperature - Pump 1A Inlet : Wide Range	RC-A	QUAL LETED	50 - 650 F	1.91 den E
RC-5B-TE1-P	Cold Leg Temperature - Pump 18 Inlet : Narrow Range (Elev. 310'2")	RC-B	QUALIFIED	520 - 620 F	2.32 deg F
RC-58-1E2-R	Cold Leo Temperature - Pump 18 Tolet - Wide Bacos	RC-R		50 - 450 E	1 B1 dec E
PRC-9-TE-P	Pressurizer Surge Line Temperature	Pressurizer	TREND	0 - 700 F	1.71 deg r
	Pressurizer Spray Valve Position, Binary Function, ICBC name is Spray Valve	Pressurizer	QUALIFIED	Open - Closed	N. A. •
C-V2	Pressurizer Block Valve Position (Open/Closed), Binary Function, ICBC name is Block Valve	RC	QUALIFIED	Open - Closed	N. A.
SF-R-3402-M	Spent Fuel Copling Area Radiation Monitor	Spent Eugl	TREND	10 - 105+4 COM	
SG-A-LEVEL	Steam Generator A - Composite Level	Steam Generator A		10 - 102 + 6 CFH	9 in
SG-B-LEVEL	Steam Generator B - Composite Level	Steam Generator 8		5.9 - 394 in	7 10 9 in
SP-10A-PT1-R	Turbine Header Pressure - Looo A	Steam Generator A		600 ~ 1700 peio	7 111 A 2 nei
SP-12A-TE1-P	Steam Generator A - Upper Downcomer Temperature	Steam Generator A	QUAL IF IED	70 - 570 F	2.2 dec F
SP-12A-TE2-P	Steam Generator A - Upper Downcomer Temperature	Steam Generator A	QUALIFIED	70 - 570 F	2.2 deg F
SP-128-TE1-P	Steam Generator B - Upper Downcomer Temperature	Steam Generator B	QUALIFIED	70 - 570 F	2.2 deg F
SP-128-TE2-P	Steam Generator B - Upper Downcomer Temperature	Steam Generator B	QUALIFIED	70 - 570 F	2.2 deg F
SP-2A-TE1-P	Steam Generator A - Shell Temperature	Steam Generator A	QUAL IFIED	70 - 600 F	8.1 deo F
SP-2A-TE2-P	Steam Generator A - Shell Temperature	Steam Generator A	QUALIFIED	70 - 600 F	8.1 deo F
SP-2A-TE3-P	Steam Generator A - Shell Temperature	Steam Generator A	QUALIFIED	70 - 600 F	8.1 deo F
SP-2A-TE4-P	Steam Generator A - Shell Temperature	Steam Generator A	QUALIFIED	70 - 600 F	8.1 deg F
SP-2A-TES-P	Steam Generator A - Shell Temperature	Steam Generator A	QUALIFIED	70 - 600 F	B.1 deg F
SP-2B-TE1-P	Steam Generator B - Shell Temperature	Steam Generator B	QUALIFIED	70 - 600 F	8.1 deg F
SP-2B-TE2-P	Steam Generator B - Shell Temperature	Steam Generator B	QUALIFIED	70 - 600 F	8.1 deg F
SP-28-TE3-P	Steam Generator B - Shell Temperature	Steam Generator B	QUALIFIED	70 - 600 F	8.1 deg F
SP-28-1E4-P	Steam Generator B - Shell Temperature	Steam Generator B	QUALIFIED	70 - 600 F	8.1 deg F
58-28-183-8	Steam Generator B - Shell Temperature	Steam Generator B	QUALIFIED	70 - 600 F	0.1 deg F
37-38-1E1/2-7	Steam Generator A - Downcomer Temperature	Steam Generator A	QUALIFIED	0 - 600 F	2.2 deg F
58-38-16172-P	Steam Generator B - Downcomer Temperature	Steam Generator B	QUALIFIED	0 - 600 F	2.2 deg F
57-4M-12-7	sceam venerator A - Main Steam Temperature	Steam Generator A	QUALIFIED	100 - 650 F	2.1 deg F
3F-90-16-F	Steam Generator B - Main Steam Temperature	Steam Generator B	QUALIFIED	100 - 650 F	2.1 deg F
37-3H-181/2-K	reeuwater lemperature	Feedwater	QUALIFIED	0 - 500 F	1.78 deg F

TABLE E I

THI-2 MEABLREMENTS DESCRIPTION LIST

MEASUREMENT IDENTIFICATION	HEAGUREMENT 14 SERIPTION	HEACTON SUB SYSTEM	CLIAL IF ICAL LONG	MABUNEMENI Holda	ME ANA ME ME FOT
SP-6A-PT1 P	Steam Generator A - Steam Pressure in Steam Line	Stwam Generator A	DUAL IF JED	10 - 121040 perg	14.0 psi
SP 68-PT1 H SP-68-PT1 H	Stean Generator A - Stean Pressure Stean Generator B - Stean Pressure	Steam Generator A. Steam Generator B	CADAL IF TED	0 - 1200 perg 0 - 1200 perg	16.1 001 16.1 001
5P-8A F1 R 9P-89-F1 H	Main Feedwater Flow Rate - Loop A Steam Generator Main Feedwater Flow Hate - Loop 8 Steam Generator	Feedwaler A Feedwaler II	ULIAL IF TED ULIAL IF TED	6 - 6.3 MPH4 - 6.3 MPH4	.106 MIU/hr .106 MIU/hr
TE-HL-A	Reactor Coolant Composite Hot Leg Temperatore Loop A	HU-A	LIGHT / THE ND	0 - 600 F	1.14 deg f
TE·HL-B	Reactor Coolant Lomposite Not Ley Temperature - Loop B	RC D	QUAL / THE ND	0 - 800 F	1.14 dwg F
ISAT PHIMARY	Reactor Coolant Saturation Temperature = Calculated from composite primary pressure, PRESS,=PRIMARY	HI	(ALIFIED	212 - 670 F	4.8 døy f
15A1-56-A	Saturation Temperature Calculated from Secondary - Pressure (SP 6A-PT1 R), Steam Generator A	Steam Generator A	QUAL IF LED	212 - 567 +	3.3 deg f
15A1-56-8	Saturation Temperature Calculated from Secondary Pressure (SP-68-P11 R), Steam Generator B	Steam Generator B	QUAL IF TED	212 567 1	5.5 deg f
WDL-PT-1202-R WDL-R-1311-M	Reactor Coolant Drain Tank (RCD1) Pressure Plant Effluent Radiation Monitor, Unit 2	Pressur i zer Di schar ge	OUAL IF TED TREND	0 - 250 µsig 19 - 10E+6 CPM	3.9 psi
NDL-TE-1200-P NGD-R-1400-G-M	Reactor Coolant Drain Tank (RCDT) Temperature Waste Gas Discharge Duct Radiation Monitor - Gas	Prossurizor Hasto Gas	DUAL IF TED TREND	0 - 250 F 10 - 101 + 6 UPM	1.7 deg f

.

٠

•

TABLE E-1

1000

TMI-2 MEASUREMENTS DESCRIPTION LIST

MEASUREMENT IDENTIFICATION	MEASUREMENT DESCRIPTION	REACTOR SUB-SYSTEM	QUAL IF ICATION CATEGORY	MEASUREMENT RANGE	MEASUREMENT UNCERTAINTY
				7 40 5	
AH-1923-1E-M	Dutside Air Elevation Delta Temperature	Plant Deildige	NUT REVIEWED	-/ - 19 F	
AH-12-3010-M	Ambient Temperature, Sump Area	Reactor Building	NUT REVIEWED	0 - 200 F	
AH-IE-DUIS-M	Ambient Temperatue, Impingement Room	Reactor Building	NUT REVIEWED	0 - 200 F	
AH-IE-JUI4-M	Amblent Temperature, Column R4	Reactor Building	NUT REVIEWED	0 - 200 F	
AH-1E-5015-M	Plenum, East	Reactor Building	NUT REVIEWED		
AH-1E-5020-M	Ambient Temperature, East, Outside Secondary Shield Wall at column R15	Reactor Building	NOT REVIEWED	10 - 2100 F	
AH-TE-5021-M	Ambient Temperature, West, Dutside Secondary Shield Wall at column R7	Reactor Building	NOT REVIEWED	0 - 200 F	
AH-TE-5022-M	Ambient Temperature, Column R16A	Reactor Building	NOT REVIEWED	0 - 200 F	
AH-TE-5023-M	Ambient Temperature, Column R5	Reactor Building	NOT REVIEWED	0 - 200 F	
AH-TE-5027-M	Temperature of the Supply Air, Column R1, Dutlet Plenum, West	Reactor Building	NOT REVIEWED	0 - 200 F	
AH-TE-5088-M	Ambient Temperature, Between Columns R17A and R18A	Reactor Building	NOT REVIEWED	0 - 200 F	
85-PR-1412-W-S	Reactor Building Pressure - Wide Range	Reactor Building	NOT REVIEWED	0 - 100 psig	
CRDM-3398-TE-M	Control Rod Drive Motor Temperature	RV	NOT REVIEWED	0 - 200 F	
DC-R-3401-M	Nuclear Service Closed Cooling Radiation Monitor	Decay Heat	NOT REVIEWED	10 - 10E+6 CPM	
EF-PT-1147-P	Emergency Feedwater Pump 2A Discharge Pressure	Feedwater	NUT REVIEWED		
EF-PT-1150-P	Emergency Feedwater Pump 2B Discharge Pressure	Feedwater	NOT REVIEWED		
EF-PT-826-P	Emergency Feedwater Pump 1 Discharge Pressure	Feedwater	NOT REVIEWED		
FC-WTP-XXX-S	Waste Transfer Pump Discharge Flow	Waste	NOT REVIEWED	0 - 100 GPM	
FW-P-1A-S	Main Feedwater Pump Speed & Governor Valve Position	Feedwater A	NOT REVIEWED	0 - 100% RPM	•
FW-P-18-5	Main Feedwater Pump Speed & Governor Valve Posistion	Feedwater B	NOT REVIEWED	0 - 100% RPM	
FW-P1A-VE-S	Main Feedwater Pump 1A Vibration/Eccentricity	Feedwater A	NOT REVIEWED	15 - 0 - 15 Mils	
FW-P18-VE-S	Main Feedwater Pump 1B Vibration/Eccentricity	Feedwater B	NOT REVIEWED	15 - 0 15 MILS	
FW-TE-1131-M	Steam Generator B - Feedwater Temperature	Steam Generator B	NOT REVIEWED	0 - 800 F	
FW-TE-1133-P	Feedwater Pump 1B Discharge Temperature	Feedwater B	NOT REVIEWED		
FW-TE-1134-M	Steam Generator A - Feedwater Temperature	Steam Generator A	NOT REVIEWED	0 - 800 F	
FW-TE-1136-P	Feedwater Pump 1A Discharge Temperature	Feedwater A	NOT REVIEWED		
FX-ABE-XX-S	Auxiliary Building Ventilation Exhaust Flow Rate	Aux Building	NOT REVIEWED	0 - 90000 CFM	
FX-ABS-XX-S	Auxiliary Building Ventilation Supply Flow Rate	Aux Building	NOT REVIEWED	0 - 90000 CFM	
FX-CBE-XX-S	Control Building Ventilation Exhaust Air Flow Rate	Control Room	NOT REVIEWED	0 - 5000 CFM	
FX-CBS-XX-S	Control Building Ventilation Supply Air Flow Rate	Control Room	NOT REVIEWED	0 - 5000 CFM	
FX-FHBE-XX-S	Fuel Handling Building Ventilation Exhaust Air Flow Rate	Fuel Handling Building	NOT REVIEWED	30K - 60K CFM	
FX-FHBS-XX-S	Fuel Handling Building Ventilation Supply Air Flow Rate	Fuel Handling Building	NOT REVIEWED	30K - 60K CFM	
FX-RBE-XX-S	Reactor Building Ventilation Exhaust Air Flow Rate	Reactor Building	NOT REVIEWED	0 - 30000 CFM	
HP-R-201-M	Control Room Area Radiation Monitor	Control Room	NDT REVIEWED	0.1 - 10E+4 mR/Hr	
HP-R-202-M	Cable Room Area Radiation Monitor	Cable Room	NOT REVIEWED	0.1 - 10E+4 mR/Hr	
HP-R-204-M	Reactor Building Area Radiation Monitor	Reactor Building	NOT REVIEWED	0.1 - 10E+4 mR/Hr	
HP-R-205-M	Reactor Coolant Evap Control Panel Area Radiation Monitor	Reactor Building	NOT REVIEWED	0.1 - 10E+4 mR/Hr	

.

15046

IMI-2 MEASUREMENTS GESCHIPTION LIST

MEASUREMENT IDENTIFICATION	MEASUREMENT IN SURTEDN	REALTIN SUB-SYSTEM	GUNG IFICATION CATEGORY	ME IN ALARE ME INT I	MEASUREMENT
HP R-206 M	Make-Up Tank Arwa Monitor	Makerup / Herl	NUT REVIEWED	10.1 101+4 mR/Hz	
HP-R-209-N	Fuel Handling Bridge, North - Arwa Hadiation Monitor	Reactor Building	NUT REVIEWED	8.1 - 166 + 4	
HP-R-210-M	Fuel Handling Bridge, South - Area Radiation Monitor	Reactor Building	NOT REVIEWED	(8), 1 1 (2) ≥ + 4 mit/1tr	
HP-R-211-N	Reactor Building Personnel Hatch Area Radiation Monitor	Reactor Building	NUT REVIEWED	19.1 - 191.+4 mH/Hr	
HP-R-212-H	Reactor Building Equipment Hatch Area Radiation Monitor	Reactor Building	NUT REVIEWED	10 - 1 - 1105; + 4 mit / Ftr	
HP-R-213-H	Incore Instrument Panel Area Radiation Monitor	Heactor Building	NOT REVIEWED	9.1 - 18E+4 nR/Hr	
HP-R-214-M	Reactor Building Dome Area Radiation Monitor	Reactor Building	NOT REVIEWED	18+3 - 10E+9 mR/Hr	
HP-R-215-M	Fuel Handling Bridge Area Radiation Honitor	Reactor Building	NUT REVIEWED	0.1 - 10E+4 wit/Hr	
HP*R~218~M	Waster Disponal Storage Area Radiation	Waste	NOT REVIEWED	0.1 - 10E+4 mR/Hr	
HP-R-219-1 H	Station Vent Hadiation Munitor - Ipdine	Aux Building	NOT REVIEWED	10 - 19E+6 CPH	
HP R 219-P M	Station Vent Radiation Monitor - Particulate	Aux Building	NOT REVIEWED	10 - 10E+6 CPM	
HP-R-220 G M	Control Room Air Intake Radiation Monitor - Gas	Control Room	NOT HEVIEHED	10 - 10E+6 CPM	
HP-R 220 1-M	Control Room Air Intake Radiation Monitor - Lodine	Control Room	NOT REVIEWED	10 - 10E+6 CPM	
HP-R-220 P M	Control Room Air Intake Radiation Monitor - Particulate	Lontrol Room	NOT REVIEWED	10 - 10E+6 CPM	
HP-R 221A-G-M	Fuel Handling Building Exhaust Air Radiation	Fuel Handling	NOT REVIEWED	10 - 10E+6 CPM	
	Monitor, Upstream of Filter - Gas	Building			
HP-R-221A-1-H	Fuel Handling Building Exhaust Air Radiation Monitor, Upstream of Filter - Iodine	Fuel Handling Building	NOT REVIEWED	10 - 10E+6 CPM	
HP R-221A-P M	Fuel Handling Building Exhaust Air Hadiation	Fuel Handling	NOT REVIEWED	10 - 10E+6 CPM	
	Monitor, Upstream of Filter - Particulate	Building			
HP-R-2219-6-M	Fuel Handling Building Exhaust Air Radiation	Fuel Handling	NOT REVIEWED	10 - 10E+6 CPH	
	Monitor, Downstream of Filter - Gas	Building			
HP-R-2218-1-M	Fuel Handling Building Exhaust Air Radiation Munitor, Downstream of Filter - Ludine	Fu el Handling Bui lding	NOT REVIEWED	10 ~ 19E+6 CPM	
HP 8 2218 P M	Fuel Handling Building Exhaust Air Radiation	Fuel Handling	NOT REVIEWED	10 - 10E+6 CPH	
	Monsile, Downstream of Filter - Particulate	Building			
HP R= 227-G-M	Peactor Building Air Sample Radiation Monitor -	P. a Patiding	NOT REVIEWED	10 - 10E+6 (PM	
HP-R-227 -1-H	Reactor Building Air Sample Radiation Monitor -	Reactor Building	NOT REVIEWED	18 - 18E+6 CPH	
HP-R-227-P-H	Reactor Building Air Sample Radiation Monitor - Particulate	Reactor Suilding	NOT REVIEWED	18 - 10E+6 LPM	
HP-R-229-1-M	Hydrogen Purge Radiation Monitor - Lodine	Reactor Building	NOT REVIEWED	18 - 18F+A CPM	
HP-R-229-P H	Hydrogen Purge Radiation Nunitor - Particulate	Reactur Building	NOT REVIEWED	10 - 100 - CPM	
HP R-231-M	Auxiliary Building Sump Tank Filter Hous Arma	Aux Butidanu	NOT REVIEWED	8.1 ~ 195+A	
•	Radiation Monitor			aR/Hr	
HP-R-232-M	Aumiliary Building Access Corridor Radiation Monitor	Aux Building	NOT REVIEWED	0.1 - 10E+4 nR/Hv	
HP-R-233-M	Auniliary Building Access Corridor Radiation Monitor	Aux Building	NDT REVIEWED	8.1 - 19E+4 mR/Hr	

٠

TABLE E-1

Sec. Sec.

TMI-2 MEASUREMENTS DESCRIPTION LIST

MEASUREMENT IDENTIFICATION	MEASUREMENT	DESCRIPTION			REACTOR SUB-SYSTEM	QUAL IFICATION CATEGORY	MEASUREMENT RANGE	MEASUREMENT
HP-R-234-M	Auxiliary Bu Monitor	uilding Access	Corridor	Radiation	Aux Building	NOT REVIEWED	0.1 - 10E+4 mR/Hr	

	Monitor			illes / Fir
MS-PT-1099-P	HP Turbine 1 Steam Generator Side 8 Pressure	Steam Generator B	NDT REVIEWED	0 - 1500 µsig
MS-PT-1100-P	HP Turbine 1 Steam Generator Side A Pressure	Steam Generator A	NOT REVIEWED	0 - 1500 psig
MS-PT-3898-P	Condensor C Cold Pressure	Condensors	NOT REVIEWED	0 - 30 in. Hg
MS-PT-3899-P	Condensor H Hot Pressure	Condensor	NOT REVIEWED	0 ~ 30 in. Hg
MS-TE-104-M	Steam Generator B1 Outlet Temperature	Steam Generator B	NOT REVIEWED	Ø - 400 F
MS-TE-110-M	Steam Generator Al Dutlet Temperature	Steam Generator A	NOT REVIEWED	0 - 800 F
		Makeun/Letdown	NOT REVIEWED	$0 = 100 \pm 0.04420$
	Make-Up Tank Level	Makeup/Letdown	NOT REVIEWED	0 - 100 i n/H20
MU TE 1501 M	Make up Tank Level	Makeup/Letdown	NOT DEVIEWED	a = 400 F
MU-1E-1381-M	Make-up fank femperature (RC Fump ?)	Hakeup/Letuown		
MU-TE-741-M	Letdown Looler Inlet Temperature	Makeup/Letdown	NUT RELURDED	
NI-ND-5-R	Power Range Level	RV	NUT REVIEWED	0 ~ 125 %
NI-ND-5-S	Power Range Level	RV	NOT REVIEWED	0 - 125 %
PC-COND-VC1-S	Condensor Vacuum	Steam Generators	NOT REVIEWED	0 - 30 in. HG
RC-1-LT1-DP-P	Pressurizer Level - Differential Pressure	Pressurizer	NOT REVIEWED	0 - 400 inches
RC-1-LT1-L-S	Pressurizer Level	Pressurizer	NOT REVIEWED	0 - 400 in/H20
RC-1-LT2-DP-P	Pressurizer Level - Differential Pressure	Pressurizer	NOT REVIEWED	0 - 400 inches
RC-1-LT3-DP-P	Pressurizer Level - Differential Pressure	Pressurizer	NOT REVIEWED	0 - 400 inches
RC-10-TE1-P	Temperature Downstream of PORV (RC-RV2)	Pressurizer	NOT REVIEWED	0 - 700 F
RC-10-TE2-P	Temperature Downstream of Pressure Relief Valve	Pressurizer	NOT REVIEWED	0 - 700 F
	RVIA			
8C-10-TE3-P	Temperature Downstream of Pressure Relief Valve	Pressurizer	NOT REVIEWED	0 - 700 F
PC-11-TE-P	Pressurizer Spray Line Temperature	Pressurizer	NOT REVIEWED	0 - 700 F
RC-140-ET-0	Practor Coolast Flow Pate - Loop A			
	Reactor Coolant Flow Rate - Loop H		NOT DUAL.	
	Reactor coblant riow Rate ~ Loop B		NOT BECODDED	0 70 HEEN
RL-13A-TE2-M	Lolo Leg Temperature - Pump IA Infet : wide Range	RL-A	NOT RELURDED	
RL-22-P1-M	Reactor Loolant Pump Seal Lavity Pressure	RL	NOT REVIEWED	0 - 2500 psig
RC-3A-PT1-P	Reacter Coolant Pressure - Loop A : Narrow Range	RC-A	NUL REVIEWED	1/00 - 2500
				psig
RC-3A-PT1-S	Reactor Coolant Pressure - Loop A : Narrow Range	RC-A	NOT REVIEWED	1700 - 2500
				psig
RC-3B-PT1-P	Reactor Coolant Pressure - Loop B: Narrow Range	RC-B	NOT REVIEWED	1700 - 2500
				psig
RC-38-PT1-S	Reactor Coolant Pressure - Loop B : Narrow Range	RC-B	NOT REVIEWED	1700 - 2500
				psig
RC-38-PT3-P	Reactor Coolant Pressure - Loop B : Wide Range	RC-B	NOT REVIEWED	0 - 2500 psig
RC-4A-TE1-5	Hot Leg Temperature - Loop A : Narrow Range	RC-A	NOT REVIEWED	520 - 620 F
RC-5A-TE2/4-P	Cold Leg Temperature - Pump 1A/2A Inlet : Wide	RC-A	NOT REVIEWED	50 - 650 F
	Range			
REAC-TRIP-R	Reactor Trip	RV	NOT REVIEWED	Run - Irin
SP-10A-PT1-P	Turbine Header Pressure - Loop A	Steam Generator A	NOT REVIEWED	600 - 1200 NELO
SP-10-1 T1-P	Steam Generator A - Full Range Level	Steam Generator A	NOT DEVIEWED	0 - LOO Locher
SP-10-172-P	Steam Generator A - Operation Level	Steam Generator A		0 - 100 101025
	Steam Generator A - Depreting Level	Stole Generator A	NOT BUHL.	
5F-1H-L12-5	Steam Generator A - Operating Level	Steam Denerator A	NOT REVIEWED	0 - 100 X
57-1H-L12-5	Steam Generator A + Operating Level	Steam Generator A	NUT REVIEWED	0 - 100 %
5P-1A-L14-H	Steam Generator A - Start-up Level	Steam Generator A	NUT QUAL.	0 - 200 inches
5P-18-LT1-P	Steam Generator B - Full Range Level	Steam Generator B	NOT REVIEWED	0 - 600 inches
TABLE E 1

THI-2 MEASUREMENTS DESCRIPTION LIST

MEASUREMENT IDENTIFICATION	MEASUREMENT DE SCRIPTION	REALTOR SUB- SYSTEM	UU CA	GLIFICATION TEGORY	ME ASSUME ME N I MANUE	MEASUREMENT
00-10-172-0						
5P-18-L 12-S	Stwar Generator B - Operating Level	Steam Generator B	NU		0 - 106 %	
SP-18-LT2-S	Steen Generator 8 - Operating (ever					
SP 10-LT4 R	Steen Generator B - Start - up i evel				10 ** 1000 /.	
SP-64-PT1-5	Stean Generator A - Stean Pressure	Steam Generator 6	NE	F REVIEWED.		
SP-68-011-P	Stean Generator B = Stean Pressure	Steam Generator B	NO	REVIEWED	1200 - 1200 perg	
SP-68-PT1 S	Steam Generator B - Steam Pressure	Steam Generator B	NO	HEVIEHED	600 1200 USIG	
SP-8A-DP1 P	A loop SG Feedwater Flow DP	Ferendiviatien A	NO	T REVIEWED	0 - 1150 10.	
					H20	
57-88-11-F	Main Foodwater Flow Rate - Loup A Stwam Generator	Feedwaler A	NO	REVIEWED	0 6.5 MPPH	
50.50.51.5	Main Feedwater Flow Hate - Loop A Steam Generator	Steam Generator A	NU	REVIEWED	0 - 6.5 HPPH	
SP-88-FT-S	Main Fordwater Flow Rate - Loop D Steam Denerator			I ME.VIEWED.	0 - 6.5 MPPH	
SHND C-10-2-M	Self-powered Neutron Detector to core	Steam Generator B			- 6.3 PPPPH	
		NV			-20 - 1000 Nationation	
5PND-C-6-2-M	Self-powered Neutron Detector, In-core	RV	F4(.)		- 214 - 15444	
					NetiGenos	
SPND-E-7-6-M	Self-powered Neutron Detector, Instore	HV	NU	REVIEWED	-20 - 1500	
					Nanoamps	
SPND-E-Y-6-M	Self-powered Neutron Detector, In-core	RV	NU	I HEVIEWED	-20 - 1500	
					Nanoamps	
2PMD-P-12-2-H	Self-powered Neutron Detector, In-core	RV	NÜ	I REVIEWED	20 - 1500	
SPND-6-11-4-M	Salt numbered Mantena Dataster Langue	£31.1		• • • • • • • • • • • •	Nehoamps	
3-40-7-75-4-11	ante power so medicion bececior, in-core	HV	NU	I HEVIEWED	-20 - 1500	
SPND-F~13-6 H	Self-powered Neutron Detector, Inscore	MV.	NH 1			
			1442		Naticancia	
SPND-F-3-2-M	Self-powered Neutron Dutector, In-core	hv	NU		210 1.5404	
					Nanganda	
SPND-F-3-4-M	Self-powered Neutron Detector, In-cure	RV	NU	I HEVILWED	20 - 1500	
					Haricrampis	
SPND-F-3-6-H	Self-powered Neutron Detector, In-cure	hv	NÜ	T REVIEWED	-210 1.5.00	
					Nanoamps	
SPAD 6 11-2-M	Self powered Neutron Detector, Incore	RV	NO	T REVIEWED	· 20 ··· 1500	
SPND-G-11-A H	Salf-nounced Neutron (whether the dome	0 4		• • • • • • • • • • • •	Nanoamps	
	Serv powered nederon beteccor, in core	NV	PRU J	I MEATEMED	0.0 - 1.540	
5PND-6-11-6-M	Self-powered Neutron Detector, In core	HV	M	T see of the same th	Manualeps	
			140	THE FILMED	NADUJANU	
SPND-6-5-2-M	Self-powered Neutron Detector, in core	HV	NO		- 200 - 1 SAM	
					Natioancis	
SPND-G-5-4-M	Self-powered Neutron Detector, Inscore	RV	NU	F REVIEWED	20 1500	
					Nancianças	
SPND-G-5-6-M	Self powered Neutron Detector, In core	RV	NU	I REVIEWED	.0 - 1500	
	- • • • • • • • •				Nangamps	
SPND-H-8-2-M	Self-powered Neutron Detector, In-core	RV	NÜ	T HEVIEMED	20 ~ 1500	
	Bald conversed Neutron Duty to the top	431.4			Nanoamps	
3/***U******	Serve powered mentron perector, incore	n ∨	NU	I HEVIEMED	-29 - 1589	
					Nanuanps	

.

.

TABLE E-1

Same damage

TMI-2 MEASUREMENTS DESCRIPTION LIST

MEASUREMENT IDENTIFICATION	MEASUREMENT DESCRIPTION	REACTUR SUB-SYSTEM	QUALIFICATION CATEGORY	MEASUREMENT RANGE	MEASUREMENT UNCERTAINTY
SPND-H-8-6-M	Self-powered Neutron Detector, In-core	RV	NDT REVIEWED	-20 - 1500	
SPND-H-9-2-M	Self-powered Neutron Detector, In-core	RV	NOT REVIEWED	Nanoamps -20 - 1500	
SPND-H-9-4-M	Self-powered Neutron Detector, In-core	RV	NOT REVIEWED	Nanoamps -20 - 1500	
SPND-H-9-6-M	Self-powered Neutron Detector, In-core	RV	NOT REVIEWED	Nanoamps -20 - 1500	
SPND-K-11-2-M	Self-powered Neutron Detector, In-core	RV	NOT REVIEWED	Nanoamps -20 - 1500	
SPND-K-11-4-M	Self-powered Neutron Detector, In-core	RV	NOT REVIEWED	Nancamps -20 - 1500	
SPND-K-11-6-M	Self-nowered Neutron Detector, In-core	RV	NOT REVIEWED	Nanoamps -20 - 1500	
SPND-K-5-2-M	Self-nowered Neutron Detector, In-core	RV	NOT REVIEWED	Nancamps -20 - 1500	
	Solf-powered Neutron Detector, In core	RV RV		-20 - 1500	
SPND-K-J-8-11	Self-powered Neutron Detector, In Core		NOT REVIEWED	Nancamps -20 - 1500	ч.
SPND-L-13-2-11	Self-powered Neutron Detector, In core			Nanoamps -20 - 1500	
SPND-L-13-6-0		RV	NOT REVIEWED	-20 - 1500 Nanoamps -20 - 1500	
SPND-L-3-2-M		RV	NOT REVIEWED	Nanoamps -20 - 1500	
SPND-L-3-4-M	Self-powered Neutron Detector, In-core			-20 - 1500 Nanoamps	
SPND-L-3-6-M	Self-powered Neutron Detector, In-core		NOT REVIEWED	Nancamps	
SPND-M-7-6-M	Self-powered Neutron Detector, In-core	RV		Nancamps	
SPND-M-9-6-M	Self-powered Neutron Detector, In-Core	RV		Nancamps	
SPND-0-10-2-M	Self-powered Neutron Detector, In-core	RV	NOT REVIEWED	-20 - 1500 Nancamµs	
5PND-0-6-2-M	Self-powered Neutron Detector, In-core			Nancamps	
TC-RWWD-TX1-S	River Water Normal/Waste Discharge Differential	Cooling Tower Discharge	NOT REVIEWED	Unknown	
TT-014-TC-0	Temperature	B Vi	NOT REVIEWED	0	
TT-026-TC-P	In-Core Thermocouple	RV	NOT REVIEWED	20 - 700 F	
TT-020-TC-P	In-Core Thermocouple	RV	NOT REVIEWED	0 - 700 F	
TT-03E-1C-P	In-Core Thermocouple	RV	NOT REVIEWED	0 - 700 F	
TT-03 -TC-P	In-Core Thermocouple	RV		0 - 700 F	
TT_03M_TC_P	In-Core Thermocouple	RV	NOT REVIEWED	0 - 700 -	
	In-Core Thermocouple	RV	NOT DEVIEWED	0 - 700 F	
11-04E-16-F	In-Core Thermorpuple	PV	NOT DELITENED	0 - 700 P	
11-04N-16-F	In core inermocouple	DU DU	NOT DEVIEWED	0 - 7000 F	
	In-Core Inermocouple		NOT DEVIEWED	0 - 700 F	
11-036-16-1	ia~core inermocoupie	RV .	NUT REVIEWED	12 → 71212 F	

.

TABLE E.I

3632

THI-2 MEASUREMENTS DESCRIPTION LIST

MERSURE MENT	MEASUREMENT DESCRIPTION	HEALTON	QUAL IF TUNTION	ME FASALINE METAT	MEASUREMENT
IDENTIFICATION		518-5751EM	CATEGURY	HININGE	INCERTAINTY
			at 19 39 44 4 10 10 10 10 10 10 10 10 10 10 10 10		
1T	In-Core Thermocouple	RV	NDT HEVIEWED	10 - 700 Dwg +	
TT-BOK-TC P	In-Core Theraccouple	NV	NUT REVIEWED	0 - 700 Dug 1	
TT-850-TC-P	In-Core Thermocouple	HV	NOT REVIEWED	10 - 71848 Dwy F	
TT-86C-1C-P	In-Core Thermucouple	RV	NOT REVIEWED	10 - 7100 Dwy F	
11-06G-1C-P	In Core Thermocouple	RV	NOT REVIEWED	0 - /00 Deg 1	
ТТ Ф Ы. ТС⊴Р	In-Core Thermocouple	HV	NUT REVIEWED	8 - 788 Deg H	
11-060-TC-P	In-Core Thermocouple	ŔV	NDT REVIEWED	0 = 120 hey F	
11- 86 P-1C-P	In Core Thermocouple	RV.	NOT REVIEWED	8 - 768 Deg F	
TT-078-TC-P	In-Core Thermocouple	ĤV	NDT REVIEWED	8 - 768 Uwy F	
TT-07E-TC-P	In-Core Thermosouple	AV	NOT REVIEWED	8 - 708 Dag F	
TT-07F-1C-P	In-Cure liver mocouple	HV	NOT REVIEWED	10 - /100 Dwg F	
TT 8/M-TC-P	In-Core Thermocouple	RV	NOT NEVIEWED	9 - 788 Deg F	
TT-078-1C-P	In-Core Thermocouple	HV	NOT REVIEWED	8 - 768 Deg F	
TT-999-1C-P	In-Core Thermocouple	RV	NUT REVIEWED	10 - /1910 Durg F	
TT-08F-TC-P	In -Core Thermocouple	HV	NUT REVIEWED	6 - /60 Deg F	
TT-98H-TC-P	In-Euror Thermocouple	HV	NUT REVIEWED	0 - 700 Deg F	
	In-Lore Thermolouple	RV		10 ~ 71010 Dery F	
	In "Lor w Thermocouple	RV	NET HEVIEWED	10 - 71040 Darg F	
11-87E-10-P	In Lore Thermocouple		NOT OF HIGH D	10 - 700 Dug F	
	In-Lore Thermocouple	RV	NUT REVIEWED	10 - 71010 Dery F	
11-89H-1L-P	In Lore Inermocouple			0 - 700 Deg F	
	In fur a there a she	RV Bu		0 ~ 700 Darg P	
	In-Core Inermocouple			and the proof	
11-10L-1L-P	In-Core Ineraccouple			10 ~ 7040 Deg F	
	In-Corp Thermocouple			9 - 700 Deg r	
	In-Core inevenceuple			10 ~ 700 Deg F	
	In-Core Thereoremate			0 ~ 700 Deg F	
11~10R-1C-P	In-Core Thereocouple			0 ~ 700 Deg F	
	In-Core Thermocouple			and the state of t	
11-110-16-8	in Core Inereccopie	RV	NOT REVIEWED	6 - 00 Dang /	
	In-Cure Thereocouple	BV.	NOT REVIEWED	0 - 700 beg f	
11-126-10-6	In Core Thermocouple	RV .	NOT REVIEWED	6 - 700 Deg f	
	the Core Thereorounte	BV.	NOT REVIEWED	6 . 766 Deg F	
11-12K-1C-P	to -Core Thereocouple	RV	NIT REVIEWED	a - 244 Deg F	
11-13C-1C-P	In-Core Thereocouple	RV	NOT REVIEWED	4 700 Deg 1	
	In-Core Thereocouple	HV	NOT REVIEWED	6 - 766 Deg /	
11-136-10-6	In-Curw Therapcouple	RV	NOT PEVIEWED	9 - 700 Deg (
	In-Core Thereocouple	RV	NOT REVIEWED	8 - 788 Deo F	
	In Core Thereorouply	RV		9 ~ 789 Day 5	
		RV	NOT REVIEWED	A = 760 Deg F	
TT - 140-10-4	In Core Thereocouple	RV	NET REVIEWED	8 - 788 Dag F	
11-14H-1C-F	Evolution C Inlet Temperature	Stean Generatura	NOT REVIEWED	8 - 188 F	
TT	Condensor H Inlet Temperature	Steam Generators	NOT REVIEWED	0 - 1940 -	
TT-DMCA.IS1-M	Decay Heat Cooler & Outlat Tennerature	Ducay Heat		8 - 4MA F	
	Deray Heat Cooler & Outlet Temperature	Derav Heat	NOT REVIEWED	10 - 4149 L	
TT_DARDA TEL 'N	Deray Heat Puen & Outlet Temperature	Decay Heat	NOT REVIEWED		
11-040-01-101-11	Decay Heat Puer A Datlet Temperature	Decay Heat			
11-07-0-161-M	Natural Draft Cooling Tower Tegnerature		NOT REVIEWED	a - a iada fi	
11 - 1000 1 - 10 1 - 11	warn ei mair contină jouri jamba arma	and the second second	THE FULL FROM THE		

.

.

TABLE E-1

2 ******

84.

TM1-2 MEASUREMENTS DESCRIPTION LIST

MEASUREMENT IDENTIFICATION	MEASUREMENT DESCRIPTION	REACTOR SUB-SYSTEM	QUALIFICATION CATEGORY	MEASUREMENT RANGE	MEASUREMENT
TT-RCAT-TXX-S TT-RWRS-TXX-M TT-TURB-TX1-M TT-TURB-TX2-M TURB-TRIP-R VA-R-748-G-M	Reactor Coolant Average Temperature Rad Waste Leakage Recovery System Temperatures Turbine Generator Temperature Turbine Generator Temperature Turbine Trip Condenser Vacuum Pump Discharge Radiation Monitor - Gas	RC Waste Turbine Turbine Turbine Feedwater	NOT REVIEWED NDT REVIEWED NOT REVIEWED NOT REVIEWED NOT REVIEWED NOT REVIEWED	520 - 620 F 0 - 700 F 0 - 200 F 70 - 250 F Run-Trip 10 - 10E+6 CPM	
VT-TURB-SW1-S WD-1A-S WGD-R-1485-G-M	Main Turbine Governor Valve Position Wind Direction Waste Gas Decay Tank Discharge 1A Radiation Monitor - Gas	Turbine Plant Waste Gas	NOT REVIEWED NOT REVIEWED NOT REVIEWED	0 - 100 % 0 - 540 F 10 - 10E+6 CPM	
WGD-R-1486-G-M WS-1A-S	Waste Gas Decay Tank Discharge 1B Radiation Monitor - Gas Wind Speed	Waste Gas Plant	NOT REVIEWED	10 - 10E+6 CPM 0 - 100 MPH	

